首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine oxygen-deficient environments with high sedimentation rates and high primary productivity can provide relevant information regarding variations of ocean–climatic conditions in the past. In the Humboldt current ecosystem, which now hosts huge populations of pelagic fishes (mainly anchovy and sardine), fish scale abundance in the sedimentary record may be useful indicators of environmental change. Here we assess such a proxy record in a 42 cm-long sedimentary core collected from 80 m in Mejillones Bay (23°S, northern Chile). We also analyse fish remains in surface sediment sampled along a bathymetric transect (from 10 to 110 m water depth) in the same bay. In the core-top record, the fluctuations of sardine and anchovy scale deposition rates (SDR) agreed with those of industrial catches for these two species in northern Chile, tending to validate the SDR as a proxy of local fish biomass when bottom anoxic conditions prevail. However, apparent SDR for records prior to 1820 have probably been influenced by dissolution processes linked to the oxygenation of the bottom environment of Mejillones Bay, as suggested by other proxy records. After 1820, the fluctuations in the relative abundance of sardine and anchovy scales point to alternating warm and cold conditions during about 30 years and then a progressively cooler period. Since ca. 1870, marked fluctuations of SDR of both species are observed, probably as a consequence of the onset of a different oceanographic regime characterized by intensified upwelling, stronger subsurface oxygen deficiency, higher primary productivity, and enhanced “ENSO-like” interdecadal variability. While anchovy SDR fluctuated in periods of 25–40 years, only two peak periods of sardine SDR occurred (late 19th century and late 20th century), suggesting that sardine abundance depends on other ocean–climatic factors.  相似文献   

2.
The diets of breeding seabirds can be a good monitor of marine environmental changes. From 1984 to 2001 we monitored the diets of black-tailed gulls (Larus crassirostris) (“surface foragers”), rhinoceros auklets (Cerorhinca monocerata) (“epipelagic divers”), and Japanese cormorants (Phalacrocorax filamentotus) (“bottom divers”) that breed on Teuri Island at the northern boundary of the Tsushima Warm current in the Sea of Japan/East Sea. Between 1984 and 1987, both the gulls and the auklets foraged on the sardine (Sardinops melanostictus), but after 1992, they switched to the anchovy (Engraulis japonica). This change might reflect the collapse of the sardine stock in the late 1980s. In the 1990s, the year-to-year variations of the percentage of anchovy in the diets of the three seabird species showed similar trends: High in 1994 and 1998–2001; and low in 1992–1993 and 1995–1997. The estimated stock size of the anchovy population in the Tsushima Current area was positively correlated with the percentage of mass of anchovy in the seabirds’ diets. Thus, the short-term annual changes of the total anchovy availability, which might reflect SST or the volume transport of Tsushima Current, possibly affected the seabirds diets on this island.  相似文献   

3.
4.
Regime shifts in the Humboldt Current ecosystem   总被引:4,自引:0,他引:4  
Of the four major eastern boundary currents, the Humboldt Current (HC) stands out because it is extremely productive, dominated by anchovy dynamics and subject to frequent direct environmental perturbations of the El Niño Southern Oscillation (ENSO). The long-term dynamics of the HC ecosystem are controlled by shifts between alternating anchovy and sardine regimes that restructure the entire ecosystem from phytoplankton to the top predators. These regime shifts are caused by lasting periods of warm or cold temperature anomalies related to the approach or retreat of warm subtropical oceanic waters to the coast of Peru and Chile. Phases with mainly negative temperature anomalies parallel anchovy regimes (1950–1970; 1985 to the present) and the rather warm period from 1970 to 1985 was characterized by sardine dominance. The transition periods (turning points) from one regime to the other were 1968–1970 and 1984–1986. Like an El Nino, the warm periods drastically change trophic relationships in the entire HC ecosystem, exposing the Peruvian anchovy to a multitude of adverse conditions. Positive temperature anomalies off Peru drive the anchovy population close to the coast as the coastal upwelling cells usually offer the coolest environment, thereby substantially decreasing the extent of the areas of anchovy distribution and spawning. This enhances the effects of negative density-dependent processes such as egg and larval cannibalism and dramatically increases its catchability. Increased spatial overlap between anchovies and the warmer water preferring sardines intensifies anchovy egg mortality further as sardines feed heavily on anchovy eggs.Food sources for juvenile and adult anchovies which prey on a mixed diet of phyto- and zooplankton are drastically reduced because of decreased plankton production due to restricted upwelling in warm years, as demonstrated by lower zooplankton and phytoplankton volumes and the diminution of the fraction of large copepods, their main food source.Horse mackerel and mackerel, the main predators of anchovy, increase predation pressure on juvenile and adult anchovies due to extended invasion into the anchovy habitat in warmer years. In contrast to these periods of warm and cold temperature anomalies on the decadal scale, ENSO events do not play an important role for long-term anchovy dynamics, as the anchovy can recover even from strong ENSO events within 1–2 years. Consequently, the strong 1972–1973 ENSO event (in combination with overfishing) was not the cause of the famous crash of the Peruvian anchovy fishery in the 1970s.  相似文献   

5.
Climate variability and pelagic fisheries in northern Chile   总被引:5,自引:0,他引:5  
A time series analysis of long-term climate variability in northern Chile (18°21′–24°00′S) shows anomalies associated with the El Niño events and the longer warm period observed since 1976, followed by a cooling trend since mid 1980s. The succession of pelagic fisheries, anchovy (Engraulis ringens) and sardine (Sardinops sagax), occurring in this fishing zone was analyzed taking into account the landings, the CPUE abundance index, the fishing effort, and the environmental variables. The anchovy production model is a negative linear function of fishing effort and turbulence. For sardine, the production model is a negative linear function of fishing effort and a quadratic function of the sea surface temperature.An analysis of the relationship between recruitment, adult biomass and the environment shows that the annual recruitment of anchovy increases with turbulence intensity until wind speed reaches a value of 5.46 m s−1, decreasing for higher values. For sardine, the recruitment increases with turbulence intensity until 5.63 m s−1, stabilizing thereafter.It is deduced that the climatic variations associated to the El Niño events affect the abundance of coastal pelagic fishes, without forgetting the most likely effects upon its distribution and the fishing effort. However, it is the long-term variability that mainly affects the fishing activity.  相似文献   

6.
The recruitment rate of Peruvian anchoveta, Engraulis ringens, was studied to test the hypothesis that long-term environmental variation (regime shifts) had a significant impact on density-dependent processes governing the anchovy recruitment during the period 1963–2004. On the basis of previous defined regimes and turning points for the Humboldt Current System, we identified two groups of years for increased recruitment of anchoveta (1963–1971 and 1986–2004), and one unfavorable period (1972–1985). A common intercept and significantly different slopes were found when the recruitment rate was plotted as a function of the spawning stock biomass during those groups of years, suggesting that density-dependent effects on recruitment were affected during different climate regimes. The favorable (unfavorable) regime was characterized by higher (lower) zooplankton volumes, and with a higher frequency of colder (warmer) waters. Dome-shaped relationships between recruitment rate, spawning stock biomass and SST, were detected with a Generalized Additive Model for the favorable regime. Thus, recruitment could be explained by non-linear effects of environmental variables. Ultimately, climatic regimes are affecting the density-dependent effects on recruitment of anchoveta and the mechanisms involved may be associated with changes in the carrying capacity of the spawning habitat of anchoveta off Peru, which in turn are related with the effects of cold and warm regimes.  相似文献   

7.
The reproductive cycle of anchovy, Engraulis encrasicolus (L.), was studied from monthly random samples of purse seine catches. A total of 1477 anchovy specimens were collected from January to December 2003 in the Zrmanja River estuary (Novigrad Sea). The analysis was based on the temporal evolution of gonadosomatic index, mass and stage of gonads. The total length of anchovy ranged from 4.5 to 14.5 cm and mass from 0.56 to 19.80 g. Sex ratio was slightly different from 1:1; the females were insignificantly predominated (♂/♀ = 0.99). The period of reproductive activity was from April to September coinciding with the most developed stages of gonads as well as with the highest gonad weights, and gonadosomatic indices. To estimate the length at maturity, a sub sample of 454 anchovy was taken from May to July (peak of anchovy spawning period). The length at which 50% of anchovy were mature (L50) was calculated to be 8.2 cm. The length–weight relationship of anchovy was described by the expression: W = 3.51 × 10−3 LT3.211 (r2 = 0.998). The relationships between total length–standard length and total length–fork length are LT = 1.1405LS + 0.2420 and LT = 1.0425 LF + 0.3944, respectively.  相似文献   

8.
The Humboldt Current System, like all upwelling systems, has dramatic quantities of plankton-feeding fish, which suggested that their population dynamics may ‘drive’ or ‘control’ ecosystem dynamics. With this in mind we analysed the relationship between forage fish populations and their main prey, zooplankton populations. Our study combined a zooplankton sampling program (1961–2005) with simultaneous acoustic observations on fish from 40 pelagic surveys (1983–2005) conducted by the Peruvian Marine Research Institute (IMARPE) and landing statistics for anchoveta (Engraulis ringens) and sardine (Sardinops sagax) along the Peruvian coast from 1961 to 2005. The multi-year trend of anchoveta population abundance varied consistently with zooplankton biovolume trend, suggesting bottom-up control on anchovy at the population scale (since oceanographic conditions and phytoplankton production support the changes in zooplankton abundance). For a finer-scale analysis (km) we statistically modelled zooplankton biovolume as a function of geographical (latitude and distance from the 200-m isobath), environmental (sea surface temperature), temporal (year, month and time-of-day) and biological (acoustic anchovy and sardine biomass within 5 km of each zooplankton sample) covariates over all survey using both classification and regression trees (CART) and generalized additive models (GAM). CART showed local anchoveta density to have the strongest effect on zooplankton biovolume, with significantly reduced levels of biovolume for higher neighbourhood anchoveta biomass. Additionally, zooplankton biovolume was higher offshore than on the shelf. GAM results corroborated the CART findings, also showing a clear diel effect on zooplankton biovolume, probably due to diel migration or daytime net avoidance. Apparently, the observed multi-year population scale bottom-up control is not inconsistent with local depletion of zooplankton when anchoveta are locally abundant, since the latter effect was observed over a wide range of overall anchoveta abundance.  相似文献   

9.
Numerical simulations using a physiologically-based model of marine ecosystem size spectrum are conducted to study the influence of primary production and temperature on energy flux through marine ecosystems. In stable environmental conditions, the model converges toward a stationary linear log–log size-spectrum. In very productive ecosystems, the model predicts that small size classes are depleted by predation, leading to a curved size-spectrum.It is shown that the absolute level of primary production does not affect the slope of the stationary size-spectrum but has a nonlinear effect on its intercept and hence on the total biomass of consumer organisms (the carrying capacity). Three domains are distinguished: at low primary production, total biomass is independent from production changes because loss processes dominate dissipative processes (biological work); at high production, ecosystem biomass is proportional to primary production because dissipation dominates losses; an intermediate transition domain characterizes mid-production ecosystems. Our results enlighten the paradox of the very high ecosystem biomass/primary production ratios which are observed in poor oceanic regions. Thus, maximal dissipation (least action and low ecosystem biomass/primary production ratios) is reached at high primary production levels when the ecosystem is efficient in transferring energy from small sizes to large sizes. Conversely, least dissipation (most action and high ecosystem biomass/primary production ratios) characterizes the simulated ecosystem at low primary production levels when it is not efficient in dissipating energy.Increasing temperature causes enhanced predation mortality and decreases the intercept of the stationary size spectrum, i.e., the total ecosystem biomass. Total biomass varies as the inverse of the Arrhenius coefficient in the loss domain. This approximation is no longer true in the dissipation domain where nonlinear dissipation processes dominate over linear loss processes. Our results suggest that in a global warming context, at constant primary production, a 2–4 °C warming would lead to a 20–43% decrease of ecosystem biomass in oligotrophic regions and to a 15–32% decrease of biomass in eutrophic regions.Oscillations of primary production or temperature induce waves which propagate along the size-spectrum and which amplify until a “resonant range” which depends on the period of the environmental oscillations. Small organisms oscillate in phase with producers and are bottom-up controlled by primary production oscillations. In the “resonant range”, prey and predators oscillate out of phase with alternating periods of top-down and bottom-up controls. Large organisms are not influenced by bottom-up effects of high frequency phytoplankton variability or by oscillations of temperature.  相似文献   

10.
Autotrophic and microheterotrophic plankton populations were monitored in the euphotic zone of the eastern subarctic Pacific during 6 one-month cruises in spring and summer, 1984, 1987 and 1988. Transmitted light, epifluorescence, and electron microscopy were used to identify, enumerate and estimate the biomass of size-populations of species. The 2–10μm size class dominated the biomass of both autotrophs and heterotrophs. The autotrophic flagellate, Phaeocystis pouchetii, was frequently observed in its non-colonial phase. Temporal variation in all the stocks was evident and could be explained only partially by the physical, chemical or biological factors investigated here. The general structure of the autotrophic community was similar to that in the North Atlantic, but major, unexplained variations between cruises occurred. Variation in mixed-layer depth and day length (but not variation in daily insolation) explained 25% of the variation in autotrophic doubling rate. Heterotrophic biomass comprised, in decreasing order of importance, non-pigmented flagellates, dinoflagellates, and ciliates. Ciliates rarely contributed more than 40% to the total. Microheterotrophic biomass rarely exceeded 30μg C 1−1 (avg 15μg C 1−1, 0–60m) whereas autotrophic biomass averaged 20μg C 1−1, 0–60m, and reached 74μg C 1−1 on one occasion, yet the grazing capacity of these microheterotrophs averaged 100% of primary production.  相似文献   

11.
Atlantic–Mediterranean anchovies were genetically characterized at two polymorphic nuclear loci (intron 6 of two creatine-kinase genes) and compared to reference Engraulis albidus and E. encrasicolus samples from the northern Western Mediterranean to provide new insights into their geographic structure. Northeastern Atlantic anchovy, represented by one sample from the Canary archipelago and one sample from the Alboran Sea, were genetically distinct from Mediterranean E. encrasicolus (Weir and Cockerham's  = 0.027–0.311), indicating geographic isolation from either side of the Almería–Oran oceanographic front. Generally smaller genetic differences were evident among anchovy populations from different sub-basins in the Mediterranean ( = − 0.019–0.116), the genetic differences between Black Sea and Ionian Sea/Aegean Sea anchovies being the strongest ( = 0.002–0.116). There was no evidence of the presence of E. albidus in our samples outside Camargue (northern shore of the Western Mediterranean). However, a sample from the southern Western Mediterranean appeared to be genetically intermediate between E. albidus and Mediterranean E. encrasicolus, indicating possible hybridization. Anchovy from the Benguela current system off southern Africa possessed allele frequencies characteristic of E. albidus at one locus and Northeastern Atlantic anchovy at the other locus, suggesting past introgression.  相似文献   

12.
Acoustic data on the abundance and distribution of anchovy Engraulis capensis, pilchard Sardinops ocellatus and round herring Etrumeus whiteheadi on the South African continental shelf have been collected from 21 echo-integrator surveys between 1984 and 1991. Most effort has been concentrated on estimating adult biomass of anchovy and pilchard in November (spring) and anchovy recruitment in autumn. Distribution maps from all surveys are presented and the biomass estimates considered most reliable documented. A series of distribution maps tracing movements of three anchovy year-classes over a four-year period is presented to illustrate the usefulness of the surveys in migration studies. The major findings of the survey programme have been that anchovy are generally considerably more abundant and widespread than was thought to be the case prior to the surveys, that the pilchard resource has recovered substantially in recent years, and that the round herring resource, about which little was known prior to the surveys, is probably of the same order of magnitude as the anchovy resource and is probably underexploited. The anchovy and pilchard resources are currently managed through procedures based largely on the acoustic estimates of biomass and their estimated precision. The role of these estimates in the management procedures is discussed in some detail.  相似文献   

13.
Based on the data on the sea-surface temperature (SST), the heat content of the upper 200-m layer, and the sea-level pressure, we analyze the low-frequency variability of the SST and heat content in the North Atlantic in 1950–1992 and the index of North-Atlantic Oscillation (NAO) in 1940–1995. It is confirmed that the role of the ocean and various mechanisms controlling the variability of SST changes for processes corresponding to different time scales (interannual, decadal, and interdecadal). It is shown that the interaction of tropical and subtropical latitudes is of principal importance on the interannual scale, the processes regulating the variability of subtropical gyre are important on the decadal scale, and the variations of the NAO with lower frequencies are controlled by the oceanic variability at high latitudes. We discuss possible feedbacks in the ocean–atmosphere system maintaining the NAO.  相似文献   

14.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   

15.
We compared estimates of anchovy biomass derived from trawl surveys, egg production method (EPM) and acoustic surveys, conducted in two remote regions. Biomass density of bay anchovy Anchoa mitchilli was estimated in Chesapeake Bay, USA, by trawls, EPM and acoustics from 1989 to 2000. Biomass density of Pacific anchovy Engraulis japonicus was estimated in the Korea Strait using EPM, simulation-based daily cohort analysis and acoustics from 1984 to 2006. Most of the existing estimates already had considered body-size-dependent gear selectivity, highlyvariable instantaneous natural mortality of anchovy eggs, and avoidance of trawl nets by adult anchovy. Despite great variability in the ratio of trawl to acoustic biomass estimates (0.034–8.35), annually-averaged biomass density of young-ofthe-year individuals derived by the two methods were similar for bay anchovy in Chesapeake Bay and Pacific anchovy in the Korea Strait (0.83 and 0.70 g m?3, respectively). Results suggested that, despite substantial uncertainty, anchovy biomass estimates are generally compatible between EPM and acoustics. However, reported estimates of biomass density derived from the two acoustic surveys in the Korea Strait differed by a factor of 28, suggesting that further improvements in calibrations are required to reliably estimate anchovy biomass. The comparisons suggested that all biomass estimates could be biased and will require comparison and validation by other, independent sampling methods.  相似文献   

16.
We investigated the geographical variations in abundance and biomass of the major taxonomic groups of micro- and net-zooplankton along a transect through Ise Bay, central Japan, and neighboring Pacific Ocean in February 1995. The results were used to estimate their secondary and tertiary production rates and assess their trophic roles in this eutrophic embayment in winter. Ise Bay nourished a much higher biomass of both micro- and net-zooplankton (mean: 3.79 and 13.9 mg C m–3, respectively) than the offshore area (mean: 0.76 and 4.47 mg C m–3, respectively). In the bay, tintinnid ciliates, naked ciliates and copepod nauplii accounted for, on average, 69, 18 and 13% of the microzooplankton biomass, respectively. Of net-zooplankton biomass, copepods (i.e. Acartia, Calanus, Centropages, Microsetella and Paracalanus) formed the majority (mean: 63%). Average secondary production rates of micro- and net-zooplankton in the bay were 1.19 and 1.87 mg C m–3d–1 (or 23.1 and 36.4 mg C m–2d–1), respectively, and average tertiary production rate of net-zooplankton was 0.75 mg C m–3d–1 (or 14.6 mg C m–2d–1). Available data approximated average phytoplankton primary production rate as 1000 mg C m–2d–1 during our study period. The transfer efficiency from primary production to zooplankton secondary production was 6.0%, and the efficiency from secondary production to tertiary production was 25%. The amount of food required to support the zooplankton secondary production corresponded to 18% of the phytoplankton primary production or only 1.7% of the phytoplankton biomass, demonstrating that the grazing impact of herbivorous zooplankton was minor in Ise Bay in winter.  相似文献   

17.
Data presented in this paper are part of an extensive investigation of the physics of cross-shelf water mass exchange in the north-east of New Zealand and its effect on biological processes. Levels of dissolved dimethylsulfide (DMS) were quantified in relation to physical processes and phytoplankton biomass. Measurements were made at three main sites over the north-east continental shelf of New Zealand's North Island during a current-driven upwelling event in late spring 1996 (October) and an oceanic surface water intrusion event in summer 1997 (January). DMS concentrations in the euphotic zone ranged between 0.4 and 12.9 nmol dm−3. Integrated water column DMS concentrations ranged from 33 to 173 μmol m−2 in late spring during the higher biomass (15–62 Chl-a mg m−2) month of October, and from 25 to 38 μmol m−2 in summer during the generally lower biomass (16–42 Chl-a mg m−2) month of January. We observed high levels of DMS in the surface waters at an Inner Shelf site in association with a Noctiluca scintillans bloom which is likely to have enhanced lysis of DMSP-producing algal cells during phagotrophy. Integrated DMS concentrations increased three-fold at a Mid Shelf site over a period of a week in conjunction with a doubling of algal biomass. A high correlation (r2=0.911, significant <0.001) of integrated DMS and chlorophyll-a concentrations for compiled data from all stations indicated that chlorophyll-a biomass may be a reasonable predictor of DMS in this region, even under highly variable hydrographic conditions. Integrated bacterial production was inversely correlated to DMS production, indicating active bacterial consumption of DMS and/or its precursor.  相似文献   

18.
This study focused on the causes of the variation in microphytobenthic biomass and the effects of this variation on macrobenthic animals in the western Seto Inland Sea, Japan, where the importance of microphytobenthos as the primary food source for benthic animals has been recently reported. We investigated the microphytobenthic biomass together with light attenuation of seawater, phytoplanktonic biomass, macrobenthic density and biomass at eight stations (water depth = 5–15 m) during four cruises in 1999–2000. The increased light attenuation coefficient of the water column associated with increased concentration of the phytoplanktonic Chl-a caused a decrease in light flux that reached the seafloor. The biomass of the microphytobenthos within the upper 1 cm of the sediment, 1.9–46.5 mg Chl-a m−2, was inversely correlated with the phytoplanktonic biomass in the overlying water column, 10.9–65.0 mg Chl-a m−2. Thus, interception of light by phytoplankton is considered to be a main cause of the variation in the microphytobenthic biomass. The microphytobenthos biomass showed a significant positive correlation with the macrobenthic density (78–9369 ind. m−2) and biomass (0.4–78.8 gWW m−2). It appears that the increase in oxygen production by the microphytobenthos allowed macrobenthic animals to become more abundant, as a consequence of oxygenation of the organically enriched muddy sediments (14.5 ± 2.69 mg TOC g−1). This study suggests that the variation in the microphytobenthic biomass is influenced by the phytoplanktonic biomass due to shading effect, and the balance between these two functional groups might affect the variability in the macrobenthic density and biomass.  相似文献   

19.
Anchovy biomass and copepod standing stocks and growth rates on the Agulhas Bank were compared during the peak spawning period (November) in 1988 and 1989. In 1988, copepod biomass over the western Agulhas Bank was low (1,0 g dry mass·m?2) relative to anchovy biomass there (14,7 g dry mass·m?2). In November 1989 in the same area, fish biomass was much lower (5,7 g dry mass·m?2), following a recruitment failure, and copepod biomass was higher (2,4 g dry mass·m?2), possibly as a result of lesser predation by anchovy. By contrast, the eastern Agulhas Bank had a larger biomass of copepods (4–6 g dry mass·?2) and a lower biomass of anchovy during both years. Knowing, from laboratory studies, that a prey biomass of 0,78 g·m?2 is required for fish to obtain their daily maintenance ration, it is suggested that spawning on the western Agulhas Bank was food-limited in 1988. Copepods on the western Bank may be replaced by local growth or transport from the eastern Bank. Growth rates of copepods on the western Bank were 10–50 per cent of maximum in 1988, but total production (c. 100 mg dry mass·m?2·day?1) was low, primarily because biomass was low and less than the rate of consumption by anchovy (243 mg copepod dry mass·m?2·day?1). On the eastern Bank, copepod production exceeded anchovy consumption and it is concluded that the flux of copepod biomass onto the western Bank may be as important as local growth in replenishing copepod stocks there. Feeding conditions for anchovy on the western Agulhas Bank are often marginal compared to the situation on the eastern Bank, and it is suggested that the selection of the western Bank as the major spawning area is related more to the success of transport and survival of eggs and larvae on the West Coast recruiting grounds than to feeding conditions per se.  相似文献   

20.
Acoustic data and net samples were collected during late spring and early fall 1997–1999 to assess zooplankton and micronekton abundance and distribution relative to the Inner Front at three sampling grids (Port Moller, Cape Newenham and Nunivak Island) on the inner shelf of the southeast Bering Sea. Epibenthic scattering layers were observed during May–June and August–September in all three years. Acoustic data were scaled to euphausiid biomass using target strength models. Mean euphausiid biomass determined acoustically for each transect line was 0.7–21 g m−2, with most values below 5 g m−2. There was no consistent relationship between the distribution and biomass of euphausiids and the location of the Inner Front. Zero age pollock were observed on the inner shelf in August–September during all years, but were confined primarily to the stratified side of the Inner Front and to the frontal regime. The acoustic data for pollock were scaled to biomass using laboratory measurements of gas bladder dimensions and target strength models. Acoustic determinations of mean transect biomass for euphausiids did not differ from literature values for the inner shelf of the southeast Bering Sea, and pollock biomass on the inner shelf did not differ from that around the Pribilof Islands. Despite recent anomalies in climate and oceanographic conditions on the inner shelf, and high mortality of shorttail shearwaters during 1997, we found no evidence of significant interannual differences in the biomass of euphausiids or zero-age pollock on the inner shelf of the southeast Bering Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号