首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The behavior of correlation tensors of fluctuations in the solar wind magnetic field and velocity is studied during different phases of a solar cycle on the basis of a 45-year measurement series of solar wind parameters. It is found that the orientation of fluctuations in the magnetic field and velocity is approximately axisymmetric relative to the direction of a local magnetic field during high solar activity. This symmetry is violated significantly during periods of low solar activity, and deviations from the symmetry are regular and oppositely directed during minima of even and odd 11-year cycles, which is probably connected with variations in the orientation of the Sun??s magnetic field. The dependence of the power of fluctuations on the local magnetic field direction reveals significant deviations from local symmetry during all phases of a solar cycle, especially for velocity fluctuations.  相似文献   

2.
Compressible fluctuations in solar wind plasma are analyzed on the basis of the 1995–2010 WIND and Advanced Composition Explorer (ACE) spacecraft data. In the low-speed solar wind (V 0 < 430 km/s), correlations between fluctuations in the magnetic field direction and plasma density, as well as between velocity fluctuations and plasma density, are found. The covariance functions of these parameters calculated as functions of the local magnetic field direction are axially symmetric relative to the axis, which is oriented nearly along the regular magnetic field of the heliosphere (the Parker spiral). Fluctuations in the magnetic field and velocity are polarized in the plane that is orthogonal to the axis of symmetry. Plasma oscillations of these properties can be caused by fast magnetosonic waves propagating from the Sun along the Parker spiral.  相似文献   

3.
Magnetohydrodynamic compressive fluctuations of the interplanetary plasma in the region from 0.3 to 1 AU have been characterized in terms of their polytropic index. Following Chandrasekhar’s approach to polytropic fluids, this index has been determined through a fit of the observed variations of density and temperature. At least three different classes of fluctuations have been identified: (1) variations at constant thermal pressure, in low-speed solar wind and without a significant dependence on distance, (2) adiabatic variations, mainly close to 1 AU and without a relevant dependence on wind speed, and (3) variations at nearly constant density, in fast wind close to 0.3 AU. Variations at constant thermal pressure are probably a subset of the ensemble of total-pressure balanced structures, corresponding to cases in which the magnetic field magnitude does not vary appreciably throughout the structure. In this case the pressure equilibrium has to be assured by its thermal component only. The variations may be related to small flow-tubes with approximately the same magnetic-field intensity, convected by the wind in conditions of pressure equilibrium. This feature is mainly observed in low-velocity solar wind, in agreement with the magnetic topology (small open flow-tubes emerging through an ensemble of closed structures) expected for the source region of slow wind. Variations of adiabatic type may be related to magnetosonic waves excited by pressure imbalances between contiguous flow-tubes. Such imbalances are probably built up by interactions between wind flows with different speeds in the spiral geometry induced by the solar rotation. This may account for the fact that they are mainly found at a large distance from the sun. Temperature variations at almost constant density are mostly found in fast flows close to the sun. These are the solar wind regions with the best examples of incompressible behaviour. They are characterized by very stable values for particle density and magnetic intensity, and by fluctuations of Alfvénic type. It is likely that temperature fluctuations in these regions are a remnant of thermal features in the low solar atmosphere. In conclusion, the polytropic index appears to be a useful tool to understand the nature of the compressive turbulence in the interplanetary plasma, as far as the frozen-in magnetic field does not play a crucial role.  相似文献   

4.
5.
太阳高能粒子(SEP)事件是一类重要的空间天气灾害性事件,如能准确预报SEP事件,人们便可以采取必要的防护措施,保障卫星、星载设备以及航天员的安全,尽可能地降低经济损失.因此,其数值预报研究在空间天气预报研究中占有很重要的地位.SEP事件中的高能粒子在不同的时间尺度内被耀斑过程或者CME驱动的激波加速,并且在被扰动后的行星际太阳风中传输,这些过程都紧紧依赖于太阳风背景场.因此获取更加接近物理真实的太阳风背景场是模拟SEP事件的重要部分,也是提高SEP物理模式的关键因素之一.我们目前的工作基于张明等发展的SEP在行星际空间传播的模型,尝试将Parker太阳风速度解及WIND飞船观测的磁场实时数据融入模型中,研究不同的太阳风速度以及真实磁场分布对SEP在行星际空间中传播的影响.通过求解聚焦传输方程,我们的模拟结果表明:(1)快太阳风条件下,绝热冷却效应项发挥了更大的作用,使粒子能量衰减的更快,而慢太阳风对粒子的通量变化没有显著影响;(2)加入观测的磁场数据时,粒子的全向通量剖面发生了比较明显的变化,具体表现在:通量峰值推迟到达、出现多峰结构、各向异性也发生一些改变.分析表明真实磁场的极性对粒子在行星际空间中传播有着重要的影响.  相似文献   

6.
EISCAT observations of interplanetary scintillation have been used to measure the velocity of the solar wind at distances between 15 and 130R (solar radii) from the Sun. The results show that the solar wind consists of two distinct components, a fast stream with a velocity of 800 km s–1 and a slow stream at 400 kms–1. The fast stream appears to reach its final velocity much closer to the Sun than expected. The results presented here suggest that this is also true for the slow solar wind. Away from interaction regions the flow vector of the solar wind is purely radial to the Sun. Observations have been made of fast wind/slow wind interactions which show enhanced levels of scintillation in compression regions.  相似文献   

7.
The solar wind velocity and polarity of the B x-component of the interplanetary magnetic field have been analyzed for the first eight months of 2005. The interplanetary magnetic field had a four-sector structure, which persisted during nine Carrington rotations. Three stable clusters of a high-speed solar wind stream and one cluster of a low-speed stream were observed during one solar rotation. These clusters were associated with the interplanetary magnetic field sectors. The predicted solar wind velocity was calculated since July 2005 one month ahead as an average over several preceding Carrington rotations. The polarity of the B x-component of the interplanetary magnetic field was predicted in a similar way based on the concept of the sector structure of the magnetic field and its relation to maxima of the solar wind velocity. The results indicate a satisfactory agreement of the forecast for two rotations ahead in July–August 2005 and pronounced violation of agreement for the next rotation due to a sudden reconfiguration of the solar corona and strong sporadic processes in September 2005.  相似文献   

8.
Geomagnetic activity in each phase of the solar cycle consists of 3 parts: (1) a “floor” below which the geomagnetic activity cannot fall even in the absence of sunspots, related to moderate graduate commencement storms; (2) sunspot-related activity due to sudden commencement storms caused by coronal mass ejections; (3) graduate commencement storms due to high speed solar wind from solar coronal holes. We find that the changes in the “floor” depend on the global magnetic moment of the Sun, and on the other side, from the height of the “floor” we can judge about the amplitude of the sunspot cycle.  相似文献   

9.
The velocity field of large-scale magnetic structures during fast reorganizations of the global solar magnetic field structure has been analyzed. Some characteristic features of the velocity field have been found during these periods. At that time, a considerable part of the solar surface is occupied by regions with low horizontal velocities, which correspond to the regions of positive and negative velocity field divergence during the solar activity growth and decline phases, respectively. Such character of changes in the velocity field during these periods agrees with the previously proposed scenario of magnetic field variations during global reorganizations of the magnetic field structure. The average horizontal velocities during a Carrington rotation and their divergence have been calculated for Carrington rotations from 1646 to 2006. Relatively slow regular variations in these parameters as well as their abrupt changes, observed during different solar cycle phases, have been revealed. An increase in the average horizontal velocity during the solar activity growth phase is most probably caused by relative motions of the regions with a new emerging magnetic flux. We assume that abrupt increases in the average horizontal velocity divergence are related to fast reorganizations of the magnetic field structure.  相似文献   

10.
The relationship between the IMF azimuthal angle and plasma velocity has been studied independently for three types of solar wind streams (recurrent and transient high-speed streams and low-speed background wind) based on the interplanetary medium parameters measured in the near-Earth orbits in 1964–1996. The relationships between the IMF azimuthal angle cotangent and plasma velocity are close to linear but strongly differ from one another and from the theoretical relationship for all types of streams. These differences area caused by the magnetic field disturbance on the time scales smaller than a day, and the effect of this disturbance has been studied quantitatively. The effective periods of rotation of the IMF sources on the Sun, depending on the solar cycle phase, have been obtained from the relations between the IMF azimuthal angle cotangent and plasma velocity. During the most part of the solar cycle, the periods of rotation of the IMF sources are close to the period of rotation of the solar equator but abruptly increase to the values typical of the solar circumpolar zones in the years of solar minimums.  相似文献   

11.
The solar magnetic field B s at the Earth’s projection onto the solar-wind source surface has been calculated for each day over a long time interval (1976–2004). These data have been compared with the daily mean solar wind (SW) velocities and various components of the interplanetary magnetic field (IMF) near the Earth. The statistical analysis has revealed a rather close relationship between the solar-wind parameters near the Sun and near the Earth in the periods without significant sporadic solar and interplanetary disturbances. Empirical numerical models have been proposed for calculating the solar-wind velocity, IMF intensity, and IMF longitudinal and B z components from the solar magnetic data. In all these models, the B s value plays the main role. It is shown that, under quiet or weakly disturbed conditions, the variations in the geomagnetic activity index Ap can be forecasted for 3–5 days ahead on the basis of solar magnetic observations. Such a forecast proves to be more reliable than the forecasts based on the traditional methods.  相似文献   

12.
行星际背景太阳风的三维MHD数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
杨子才  沈芳  杨易  冯学尚 《地球物理学报》2018,61(11):4337-4347
近地空间的太阳风参数预报具有重要的科学研究意义和实际应用价值,三维磁流体力学(MHD)数值模拟是太阳风参数预报的重要手段.本文建立了一套基于经验模型的三维MHD数值模型.模型的内边界设置在0.1天文单位(AU)处,在六片网格系统下利用TVD Lax-Friedrich格式求解理想MHD方程组,采用扩散法消除磁场的散度.模型以GONG的观测磁图作为输入数据,利用经验模型并结合卫星观测特征确定内边界条件.边界条件中保留了6个可调参数,以便适当调整参数使其方便适合模拟不同太阳活动期的太阳风.利用该模型分别模拟了2007年和2016年的背景太阳风,得到了太阳风速度、密度、温度和磁场强度,这些参数与ACE/WIND卫星观测符合较好.  相似文献   

13.
延续2008-2009年的太阳极低活动期,第24太阳活动周开始后太阳活动性上升缓慢,即使在趋近峰年时太阳极紫外(EUV)辐射通量的水平仍显著低于前几个活动周.比较第23、24周的太阳辐射水平,及日本国分寺和子午工程武汉站的电离层测高仪观测,发现第24周的太阳EUV辐射、电离层F区临界频率(foF2)和峰值高度(hmF2)都显著低于第23周的同期水平;在较低高度上,偏低的EUV辐射带来的电子密度变化不明显,而峰值电子密度(NmF2)和0.1~50 nm太阳EUV辐射通量在多数时候都同步的偏低25%~50%;但是在夏季NmF2与EUV辐射的关联性较差,即NmF2的偏低在夏季较少.分析认为这与热层中性风的季节特点有关:在夏季午后,吹向极区的子午向风总是较弱,在第24周偏低的EUV辐射背景下,减弱的离子曳力使其他季节的极区向风得到增强,进一步促进了NmF2和hmF2的降低,使这一机制的效果非常显著.基于上述结论,在对第24周电离层进行预测预报时,需更多地考虑非直接电离机制的影响.总体而言,第24周的热层和电离层变化特征可能将有别于之前几个活动周的观测,并偏离人们在此基础上所形成的认识.  相似文献   

14.
Solar wind plasma and magnetic field observations from multiple spacecraft can be used to separate temporal and spatial variations and to determine the accuracy of predictions of solar wind conditions near Earth based on distant-spacecraft measurements. The study of correlations between the ion fluxes measured by three spatially separated spacecraft (IMP 8, WIND and INTERBALL-1) was one of the first steps in this direction. This paper describes a complex multifactor analysis of different physical, geometrical, and statistical parameters that control such correlations (considered separately and in combination). A linear-regression and an artificial neural network techniques are used for this analysis. The analysis is applied to an extensive array of correlation coefficients for the ion flux in the solar wind and provides estimates of the relative significance of the factors that control these correlation coefficients. The study shows that the most influential parameters are the solar wind density and the standard deviations of solar wind density, solar wind velocity and interplanetary magnetic field. This set of parameters permits us to develop a sufficiently accurate (with a relative error of less than a few per cent) quantitative model for the correlation between the ion fluxes measured on two spatially separated spacecraft.  相似文献   

15.
Legrand and Simon [1989. Solar cycle and geomagnetic activity: a review for geophysicists. Part I. The contributions to geomagnetic activity of shock waves and of the solar wind. Annales Geophysicae 7(6), 565–578] classified one century (1868–1978) of geomagnetic activity, using the Mayaud's Aa index, in four classes related to solar activity: (1) the magnetic quiet activity due to slow solar wind flowing around the magnetosphere, (2) the recurrent activity related to high wind speed solar wind, (3) the fluctuating activity related to fluctuating solar wind and (4) the shock activity due to shock events (CME). In this paper, we use this classification to analyse the solar–geomagnetic activity from 1978 to 2005. We found that during the last three decades the level of geomagnetic quiet activity estimated by Aa indices is decreasing: 2003 is the year of the smallest level of quiet geomagnetic activity since 1868. We compare Legrand and Simon's classification with new in situ solar wind data [Richardson, I.G., Cliver, E.W., Cane, H.V., 2000. Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. Journal of Geophysical research 105(A8), 18,200–18,213; Richardson, I.G., Cane, H.V., 2002. Sources of geomagnetic activity during nearly three solar cycles (1972–2000). Journal of Geophysical Research 107(A8), 1187] and find a rather good agreement. The differences are only due to minor definitions of the extent of the classes. An attempt is made at defining a more precise standard classification of solar phenomena and at defining time scales of these to understand more precisely the geomagnetic signatures of solar activity.  相似文献   

16.
Recent years allowed us to study long-term variations in the cosmic ray (CR) intensity at an unusually deep solar activity (SA) minimum between cycles 23 and 24 and during the SA growth phase in cycle 24, which was the cycle when SA was the lowest for the epoch of regular ground-based CR observations since 1951. The intensity maximum, the value of which depends on the particle energy, was observed in CR variations during the period of an unusually prolonged SA minimum: the CR density during the aformentioned period (2009) is higher than this density at previous CR maxima in cycles 19–23 for low-energy particles (observed on spacecraft and in the stratosphere) and medium-energy particles (observed with neutron monitors). After 2009 CR modulation at the SA growth phase was much weaker over three years (2010–2012) than during the corresponding SA growth periods in the previous cycles. The possible causes of this anomaly in CR variations, which are related to the CR residual modulation value at a minimum between cycles 23 and 24 and to variations in SA characteristics during this period, were examined. The contribution of different solar magnetic field characteristics and indices, taking into account sporadic solar activity, has been estimated.  相似文献   

17.
王明  吕建永  李刚 《地球物理学报》2014,57(11):3804-3811
利用全球磁流体力学(MHD)的模拟结果,研究了太阳风压力系数与上游太阳风参数和日下点磁层顶张角的相关性.在识别出日下点附近磁层顶位置后,通过拟合得到日下点附近的磁层顶张角.在考虑上游太阳风中的磁压和热压以及磁层顶外侧的太阳风动压的情况下,计算了太阳风压力系数.通过分析行星际磁场不同方向时太阳风动压在日地连线上与磁压和热压的转化关系,详细研究了太阳风参数和日下点磁层顶张角对太阳风压力系数的影响,得到以下相关结论:(1) 在北向行星际磁场较大(Bz≥5 nT)时,磁层顶外侧磁压占主导,南向行星际磁场时磁层顶外侧热压占主导;(2) 太阳风压力系数随着行星际磁场的增大而增大,随着行星际磁场时钟角的增大而减小;并且在行星际磁场大小和其他太阳风条件相同时,北向行星际磁场时的太阳风压力系数要大于南向行星际磁场时的;北向行星际磁场时,太阳风压力系数随着太阳风动压的增大而减小,南向行星际磁场时,太阳风压力系数随着太阳风动压的增大而增大;以上结论是对观测结果的扩展;(3) 最后,我们还发现太阳风压力系数随着日下点磁层顶张角的增大而增大.  相似文献   

18.
Disturbances in the solar wind density, geomagnetic field, and magnetospheric plasma density and fluxes are analyzed. The disturbances have the same sign and are close to each other in time. They accompany the process of amplitude modulation of Pc1 geomagnetic pulsations during the recovery phase of the moderate magnetic storm of April 10–11, 1997. The magnetospheric disturbances were recorded by ground-based observatories and on spacecraft in all local time sectors with insignificant time delays. It is concluded that in this case variations in the geomagnetic field and magnetospheric plasma density are primary, whereas the amplitude modulation of Pc1, 2 is a secondary manifestation of fast magnetosonic (FMS) waves that are generated during the interaction between the magnetosphere and solar wind density irregularities.  相似文献   

19.
Based on observations of long-term variations in galactic cosmic rays (CRs) on Earth and in the near-Earth space, we have determined, using our own semiempirical model, modulation of galactic CRs during solar cycles 19–23. The modulation model relates CR variations to the characteristics of the solar magnetic field obtained for the surface of the solar wind source at distances of 2.50 and 3.25 solar radii. The main focus is CR behavior at the minimums of cycles 19–23 and specific features of CR modulation at a prolonged (as compared to previous cycles) minimum of cycle 23, which is still ongoing. CR modulation at minimums related to a change in the solar field dipole component during this period of the cycle has been considered. It is indicated that the long-term variations in CRs are better described if the last two years (2007 and 2008) of cycle 23 with anomalously low solar activity (SA) are included in the model. The role and value of the contribution of the cyclic variations in each index used in the proposed CR modulation model to the observed CR modulation have been estimated.  相似文献   

20.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号