首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we have established the energy matrices of the strong-field terms of the d 4 (d 6) electron configuration in a crystal-field with C 2v symmetry. When we used this procedure to calculate the spin-forbidden absorption bands of Fe2+ in the M(2) site in orthopyroxene, we substituted the single-electron crystal-field energy levels (determined by the experimental results of the spinallowed spectrum) into the energy matrices instead of the single-electron crystal-field matrix elements. Thus, by means of only one parameter B (C=4B), most of the spin-forbidden bands of Fe2+ have been determined. Furthermore, when a similar treatment was made of the M(1) site of O h symmetry, the entire spin-forbidden spectrum of Fe2+ in orthopyroxenes could be semiquantitatively explained. This shows that the method is particularly useful for the calculation of spin-forbidden spectra of complexes with the d 4 (d 6) configuration in a low-symmetry site.  相似文献   

2.
A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+–Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z′)-polarized, very strong and broad band at 16000 cm−1 if <, in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm−1 in crystals with  ≥ . The energy difference is explained by an expansion of the Of–Ok, and Ob–Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+ 4A2g4T2g(F)(I), →4T1g(F)(II), and →4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a, A), 17200(a, E), 16000(b, A), 16200(b, E); II: 24800(a, A), 24400(a, E); 22300(b, A), 22200(b, E); III: 28800(b,A) cm−1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm−1, Dq(b)=1600 cm−1, B(a)=790 cm−1, B(b)=620 cm−1 (errors ca. ±10 cm−1), again in agreement with values extracted from the λ3, λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically different but close in their mean Al–O distances, ranging from 1.896 to 1.919 A (Burnham 1963), and slight degrees of distortion. Hence, band set a originates from substitutive Cr3+ in the kyanite structural matrix. The CF-data of Cr3+ type b, expecially B, resemble those of Cr3+ in oxides, especially of corundum type solid solutions or eskolaite. This may be interpreted by the assumption that a fraction of the total chromium contents might be allocated in a precursor of a corundum type exsolution. Received: 3 January 1997 / Revised, accepted: 2 May 1997  相似文献   

3.
It is shown the possibility to determine the coordination of paramagnetic ions in disordered solid structures, e.g., in barium borate glasses. For this purpose the electron paramagnetic resonance (EPR) method was used to study α-and β-BaB2O4 crystals and glasses of 45·BaO × 55·B2O3 and 40·BaO × 60·B2O3 (mol%) composition activated by Ag+ and Pb2+ ions. After the samples were exposed to X-rays at 77 K, different EPR centers were observed in them. In α-and β-BaB2O4 crystals and glasses the EPR centers Ag2+, Ag0, Pb+, Pb3+, and hole centers of O type were studied. The EPR parameters of these centers and their arrangement in crystal structure were determined. It is shown that Pb3+ ions in β-BaB2O4 crystals occupy Ba2+ position in an irregular polyhedron from the eight oxygen, whereas in α-BaB2O4 crystals they occupy Bа2 position in a sixfold coordination. Pb+ ions in α-BaB2O4 crystals occupy Bа1 position in a ninefold coordination from oxygen. In barium borate glasses, Pb3+ ions were studied in coordination polyhedron from six oxygen atoms and in a polyhedron from nine to ten oxygen atoms. It is assumed that the established difference in the structural position of Pb3+ ions in glasses is due to their previous incorporation in associative cation–anion complexes (AC) and “free” structure-forming cations (FC). Computer simulations have been performed to analyze the stability of specific associative complexes and to compare their bond lengths with experimental data.  相似文献   

4.
The expressions of the crystal-field potential energies and perturbation matrix elements corresponding to the point symmetriesC 4v ,D 2h andC i are given in this paper. The crystal-field transition frequencies of Cu2+ ions in metatorbernite, conichalcite and turquoise calculated by using these expressions are also reported. The calculated results are essentially consistent with experimental data.  相似文献   

5.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

6.
 The spinel solid solution was found to exist in the whole range between Fe3O4 and γ-Fe2SiO4 at over 10 GPa. The resistivity of Fe3− x Si x O4 (0.0<x<0.288) was measured in the temperature range of 80∼300 K by the AC impedance method. Electron hopping between Fe3+ and Fe2+ in the octahedral site of iron-rich phases gives a large electric conductivity at room temperature. The activation energy of the electron hopping becomes larger with increasing γ-Fe2SiO4 component. A nonlinear change in electric conductivity is not simply caused by the statistical probability of Fe3+–Fe2+ electron hopping with increasing the total Si content. This is probably because a large number of Si4+ ions occupies the octahedral site and the adjacent Fe2+ keeping the local electric neutrality around Si4+ makes a cluster, which generates a local deformation by Si substitution. The temperature dependence of the conductivity of solid solutions indicates the Verwey transition temperature, which decreases from 124(±2) K at x=0 (Fe3O4) to 102(±5) K at x=0.288, and the electric conductivity gap at the transition temperature decreases with Si4+ substitution. Received: 15 March 2000 / Accepted: 4 September 2000  相似文献   

7.
The best known cause for colors in insulating minerals is due to transition metal ions as impurities. As an example, Cr3+ is responsible for the red color of ruby (α-Al2O3:Cr3+) and the green color of eskolaite (α-Cr2O3). Using X-ray absorption measurements, we connect the colors of the Cr x Al2−x O3 series with the structural and electronic local environment around Cr. UV–VIS electronic parameters, such as the crystal field and the Racah parameter B, are related to those deduced from the analysis of the isotropic and XMCD spectra at the Cr L2,3-edges in Cr0.07Al1.93O3 and eskolaite. The Cr–O bond lengths are extracted by EXAFS at the Cr K-edge in the whole Cr x Al2−x O3 (0.07≤x< 2) solid solution series. The variation of the mean Cr–O distance between Cr0.07Al1.93O3 and α-Cr2O3 is evaluated to be 0.015 Å (≈1%). The variation of the crystal field in the Cr x Al2−x O3 series is discussed in relation with the variation of the averaged Cr–O distances.  相似文献   

8.
Single-crystal Raman spectra of marcasite-type FeS2, FeSe2, and FeTe2 and loellingite-type FeP2, FeAs2, and FeSb2 are presented and discussed with reference to the energies of the two X-X stretching modes v x-x (A g, B 1g) and the four X2 librations Rx2 (A g, B 1g, B 2g, B 3g). The main results obtained are that (i) the intraionic X-X bonds of FeS2 marcasite and FeS2 pyrite are nearly equal in strengths (mean values of the S-S stretching modes 418 and 420 cm-1, respectively) and (ii) the interactions of the metal ions and the dumbbell-like X2 units increase on going from the chalcogenides to the respective pnictides and from FeS2 marcasite to pyrite (as shown from the frequencies of the X2 librations).  相似文献   

9.
Synthetic diopsides in the join CaMgSi2O6 CaCrAlSiO6 have been studied by means of crystal-field theory. These diopsides are either blue or pale green in colour. The former forms at lower temperatures and the latter at higher temperatures. The optical spectra and colours can be unequivocally explained based on the assumption that Cr3+ions occupy both tetrahedral and octahedral sites in the diopsides. In the blue diopsides Cr3+ions are present in two kinds of spin state, i.e., tetrahedrally coordinated low spin and octahedrally coordinated high spin. On heating the blue diopsides, tetrahedral occupancy of chromium decreases sharply due to spin transformation from tetrahedral low spin to octahedral high spin. Above 1,160° C nearly all chromium ions are present in octahedral sites with high spin state and the diopsides become pale green in colour. Some petrogenetic applications of the resultes are discussed.  相似文献   

10.
Sr2Fe2O5 is a typical oxygen-deficient perovskite and adopts brownmillerite phase (Ibm2, Z = 4) at ambient conditions. Its high-pressure structural behavior has been investigated by both synchrotron radiation X-ray diffraction with diamond anvil cell technique and first principles calculations. Experimental results clearly show that the brownmillerite Sr2Fe2O5 transforms into a tetragonal perovskite-type phase at 12.0 GPa and room temperature, and then into a Sr2Mn2O5-type phase (Pbam, Z = 2) at 23.3 GPa after high-temperature annealing. The Sr2Mn2O5-type phase is stable up to at least 60 GPa and it further undergoes a reversible transition to a lower symmetry phase at 79.1 GPa and ~2,000 K. The results from theoretical calculation not only confirm that the tetragonal phase of Sr2Fe2O5 is isostructural with the high-temperature structure of Ba2In2O5 (I4/mcm, Z = 4), but also predict a series of phase transitions from brownmillerite phase to Ba2In2O5-type phase at 6.9 GPa, and then to Sr2Mn2O5-type phase at 19.7 GPa, which coincides with present experiment results. Isothermal pressure–volume relationship of the Sr2Mn2O5-type phase can be well described by the Birch–Murnaghan Equation of State with V 0 = 111.6(10) Å3, B 0 = 122(9) GPa, B 0  = 4(fixed) experimentally and V 0 = 115.8(3) Å3, B 0 = 92(4) GPa, B 0  = 4(fixed) theoretically. The transition mechanism from brownmillerite to Ba2In2O5-type phase is the displacement of four-coordinated Fe3+ ions to higher coordinated positions upon compression. In addition, a semiconductor-to-metal crossover is predicted from brownmillerite to Ba2In2O5-type or Sr2Mn2O5-type phase.  相似文献   

11.
The energy levels of MnO 6 9? clusters, with D 4h approximated and C 2v actual symmetry of the M 1 site of Mn3+-bearing andalusite, are calculated using the multiple scattering method. The energies of the electronic d-d transition of Mn3+ in the clusters with D 4h symmetry are calculated to be 6,000–7,000 cm?1 (5 B 1g 5 A 1g ), ~18,000 cm?1 (5 B 1g 5 B 2g ) and ~19,000 cm?1 (5 B 1g 5 E g ). Apart from a splitting of the 5 E g -level into two levels separated by 300–350 cm?1, no significant changes of these transition energies are noted for the corresponding cluster with C 2v symmetry. The calculated transition energies give a good fit to the structure of the optical absorption spectra of Mn3+-bearing andalusites and support recent assignments of the major absorption bands observed in these spectra.  相似文献   

12.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

13.
The transition energies responsible for optical absorption spectra can be obtained by crystal-field analysis, but the transition intensities are notoriously difficult to calculate. This paper examines the basic ingredients of the calculation of optical spectrum intensities. Magnetic dipole and electric quadrupole transitions intensities are evaluated, as well as the direct d(Ni2+) to p(O2−) electric dipole transitions. All these contributions are shown to be small in the optical range, so that spectral intensities are due to the mixing of odd orbitals with the Ni2+ 3d n states. Received: 11 November 1997 / Revised, accepted: 6 September 1999  相似文献   

14.
Tourmaline with the general formula XY3Z6(BO3)3Si6O18(OH,O)3(OH,F) and the trigonal space group R3m (C3v5) is known as a gemstone with great variety of colors. Some color centers are related to transition metal ions, and others to electron or hole traps. In this paper we report on a combined study using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and the optical detection of EPR (ODEPR) on a yellow color center produced by -irradiation in colorless Li-bearing elbaite tourmaline from Brazil. The color center is an O hole trap center, which is stabilized within the plane spanned by three Y sites, and is located in the structural channels formed by Si6O18. We suggest that two of the Y sites are substituted by 27Al and the other by 6,7Li. During the irradiation process atomic hydrogen H0 is also produced, which shows the same thermal stability as the hole center (250 °C). Therefore, we assign H0 to be the local charge compensator for the hole trap. From the ODEPR measurements we conclude that the yellow color is caused by the O hole center. The large negative isotropic Al superhyperfine interaction of the O hole trap center is consistent with a calculation of the transferred hyperfine interactions by exchange polarization supporting the proposed defect model of an O at the O1 sites, whereby the O is relaxed into the plane formed by three Y ions.  相似文献   

15.
The concentrations of CH4, SO42−, σCO2 and the carbon isotope compositions of ΣCO2 and CH4 in the pore-water of the GS sedimentary core collected from Guishan Island (Pearl River Estuary), South China Sea, were determined. The methane concentration in the pore-water shows dramatic changes and sulfate concentration gradients are linear at the base of the sulfate reduction zone for the station. The carbon isotope of methane becomes heavier at the sulfate-methane transition (SMT) likely because of the Raleigh distillation effect; 12CH4 was oxidized faster than 13CH4, and this caused the enrichment of residual methane δ 13C and δ 13C-ΣCO2 minimum. The geochemical profiles of the pore-water support the existence of anaerobic oxidation of methane (AOM), which is mainly controlled by the quality and quantity of the sedimentary organic matter. As inferred from the index of δ 13C-TOC value and TOC/TN ratio, the organic matter is a mix of mainly refractory terrestrial component plus some labile alga marine-derived in the study area. A large amount of labile organic matter (mainly labile alga marine-derived) is consumed via the process of sedimentary organic matter diagenesis, and this reduces the amount of labile organic matter incorporated into the base of the sulfate reduction zone. Due to the scarcity of labile organic matter, the sulfate will in turn be consumed by its reaction with methane and therefore AOM takes place. Based on a diffussion model, the portion of pore-water sulfate reduction via AOM is 58.6%, and the percentage of ΣCO2 in the pore-water derived from AOM is 41.4%. Thus, AOM plays an important role in the carbon and sulfur cycling in the marine sediments of Pearl River Estuary.  相似文献   

16.
Kojitani  H.  Nishimura  K.  Kubo  A.  Sakashita  M.  Aoki  K.  Akaogi  M. 《Physics and Chemistry of Minerals》2003,30(7):409-415
Raman spectroscopy of calcium ferrite type MgAl2O4 and CaAl2O4 and heat capacity measurement of CaAl2O4 calcium ferrite were performed. The heat-capacity of CaAl2O4 calcium ferrite measured by a differential scanning calorimeter (DSC) was represented as CP(T)=190.6–1.116 × 107T–2 + 1.491 × 109T–3 above 250 K (T in K). The obtained Raman spectra were applied to lattice dynamics calculation of heat capacity using the Kieffer model. The calculated heat capacity for CaAl2O4 calcium ferrite showed good agreement with that by the DSC measurement. A Kieffer model calculation for MgAl2O4 calcium ferrite similar to that for CaAl2O4 calcium ferrite was made to estimate the heat capacity of the former. The heat capacity of MgAl2O4 calcium ferrite was represented as CP(T)=223.4–1352T –0.5 – 4.181 × 106T –2 + 4.300 × 108T –3 above 250 K. The calculation also gave approximated vibrational entropies at 298 K of calcium ferrite type MgAl2O4 and CaAl2O4 as 97.6 and 114.9 J mol–1 K–1, respectively.  相似文献   

17.
Phase transitions in MgGeO3 and ZnGeO3 were examined up to 26 GPa and 2,073 K to determine ilmenite–perovskite transition boundaries. In both systems, the perovskite phases were converted to lithium niobate structure on release of pressure. The ilmenite–perovskite boundaries have negative slopes and are expressed as P(GPa)=38.4–0.0082T(K) and P(GPa)=27.4−0.0032T(K), respectively, for MgGeO3 and ZnGeO3. Enthalpies of SrGeO3 polymorphs were measured by high-temperature calorimetry. The enthalpies of SrGeO3 pseudowollasonite–walstromite and walstromite–perovskite transitions at 298 K were determined to be 6.0±8.6 and 48.9±5.8 kJ/mol, respectively. The calculated transition boundaries of SrGeO3, using the measured enthalpy data, were consistent with the boundaries determined by previous high-pressure experiments. Enthalpy of formation (ΔH f°) of SrGeO3 perovskite from the constituent oxides at 298 K was determined to be −73.6±5.6 kJ/mol by calorimetric measurements. Thermodynamic analysis of the ilmenite–perovskite transition boundaries in MgGeO3 and ZnGeO3 and the boundary of formation of SrSiO3 perovskite provided transition enthalpies that were used to estimate enthalpies of formation of the perovskites. The ΔH f° of MgGeO3, ZnGeO3 and SrSiO3 perovskites from constituent oxides were 10.2±4.5, 33.8±7.2 and −3.0±2.2 kJ/mol, respectively. The present data on enthalpies of formation of the above high-pressure perovskites were combined with published data for A2+B4+O3 perovskites stable at both atmospheric and high pressures to explore the relationship between ΔH f° and ionic radii of eightfold coordinated A2+ (R A) and sixfold coordinated B4+ (R B) cations. The results show that enthalpy of formation of A2+B4+O3 perovskite increases with decreasing R A and R B. The relationship between the enthalpy of formation and tolerance factor ( R o: O2− radius) is not straightforward; however, a linear relationship was found between the enthalpy of formation and the sum of squares of deviations of A2+ and B4+ radii from ideal sizes in the perovskite structure. A diagram showing enthalpy of formation of perovskite as a function of A2+ and B4+ radii indicates a systematic change with equienthalpy curves. These relationships of ΔH f° with R A and R B can be used to estimate enthalpies of formation of perovskites, which have not yet been synthesized.  相似文献   

18.
Six synthetic NaScSi2O6–CaNiSi2O6 pyroxenes were studied by optical absorption spectroscopy. Five of them of intermediate (Na1−x , Ca x )(Sc1−x , Ni x )Si2O6 compositions show spectra typical of Ni2+ in octahedral coordination, more precise Ni2+ at the M1 site of the pyroxene structure. The common feature of all spectra is three broad absorption bands with maxima around 8,000, 13,000 and 24,000 cm−1 assigned to 3 A 2g → 3 T 2g, 3 A 2g → 3 T 1g and →3 T 1g (3 P) electronic spin-allowed transitions of VINi2+. A weak narrow peak at ∼14,400 cm−1 is assigned to the spin-forbidden 3 A 2g → 1 T 2g (1 D) transition of Ni2+. Under pressure the spin-allowed bands shift to higher energies and change in intensity. The octahedral compression modulus, calculated from the shift of the 3 A 2g → 3 T 2g band in the (Na0.7Ca0.3)(Sc0.7Ni0.3)Si2O6 pyroxene is evaluated as 85±20 GPa. The Racah parameter B of Ni2+(M1) is found gradually changing from ∼919 cm−1 at ambient pressure to ∼890 cm−1 at 6.18 GPa. The Ni end-member pyroxene [(Ca0.93 Ni0.07)NiSi2O6] has a spectrum different from all others. In addition to the above mentioned bands of Ni2+(M1) it displays several new relatively intense and broad extra bands, which were attributed to electronic transitions of Ni2+ at the M2 site. In difference to CaO8 polyhedron geometry of an eightfold coordination, Ni2+(M2)O8 polyhedra are assumed to be relatively large distorted octahedra. Due to different distortions and different compressibilities of the M1 and M2 sites the Ni2+(M1)- and Ni2+(M2)-bands display rather different pressure-induced behaviors, becoming more resolved in the high-pressure spectra than in that measured at atmospheric pressure. The octahedral compression modulus of Ni2+(M1) in this end-member pyroxene is evaluated as 150 ± 25 GPa, which is noticeably larger than in Ni0.3 pyroxene. This is due to a smaller size and, thus, a stiffer character of Ni2+(M1)O6 octahedron in the (Ca0.93Ni0.07)NiSi2O6 pyroxene compared to (Na0.7Ca0.3)(Sc0.7Ni0.3)Si2O6.
Monika Koch-MüllerEmail:
  相似文献   

19.
 The relative stabilities of orthozoisite, Ca2Al3[O|OH|Si2O7|SiO4], space group Pnma, and the monoclinic polymorph, clinozoisite, space group P21/m, have been investigated using calculations based on density functional theory. It is found that orthozoisite is more stable than clinozoisite by about 1 kJ mol−1 at zero pressure in the athermal limit. The bulk moduli of the two polymorphs have been calculated to be Bortho=117.5(1.7) GPa and Bclino=136(4) GPa. Received: 20 March 2000 / Accepted: 26 February 2001  相似文献   

20.
The assignment of spin-allowed Fe2+-bands in orthopyroxene electronic absorption spectra is revised by studying synthetic bronzite (Mg0.8 Fe0.2)2Si2O6, hypersthene (Mg0.5 Fe0.5)2Si2O6 and ferrosilite (Fe2Si2O6). Reheating of bronzite and hypersthene single crystals causes a redistribution of the Fe2+-ions over the M1 and M2 octahedra, which was determined by Mössbauer spectroscopy and correlated to the intensity change of the spin-allowed Fe2+ d-d bands in the polarized absorption spectra. The 11000 cm-1 band is caused by Fe2+ in M1 (5B2g5A1g) and Fe2+ in M2 (5A15A1), the 8500 cm-1 band by Fe2+ in M1 (5B2g5B1g) and the 5000 cm-1 band by Fe2+ in M2 octahedra (5A15B1). The Fe2+-Fe3+ charge transfer band is identified at 12500cm-1 in the spectra of synthetic Fe3+ -Al bearing ferrosilite. This band shows a strong γ-polarization and therefore is caused by Fe2+ -Fe3+-ions in edge-sharing octahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号