首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5 ± 0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5 ± 0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

2.
New40Ar/39Ar plateau ages from rocks of Changle-Nanao ductile shear zone are 107.9 Ma(Mus), 108.2 Ma(Bi), 107.1 Ma(Bi), 109.2 Ma(Hb) and 117.9 Ma(Bi) respectively, which are concordant with their isochron ages and record the formation age of the ductile shear zone. The similarity and apparent overlap of the cooling ages with respective closure temperatures of 5 minerals document initial rapid uplift during 107–118 Ma following the collision between the Min-Tai microcontinent and the Min-Zhe Mesozoic volcanic arc. The40Ar/39 Ar plateau ages, K-Ar date of K-feldspar and other geochronologic information suggest that the exhumation rate of the ductile shear zone is about 0.18–1.12 mm/a in the range of 107–70 Ma, which is mainly influenced by tectonic extension.  相似文献   

3.
Vesicle characteristics (vesicularity, largest vesicle size, number of vesicles/cm2), CO213C and CO2-4He-40Ar-40Ar/36Ar in vesicles and CO213C in the glass have been measured in 19 tholeiitic basalt glasses from the Easter Microplate East Ridge (East Pacific Rise) collected at 3 different sites (26°S East Ridge, Pito Seamount and Pito Deep at 23°S).Carbon supersaturation values (Cmelt/Csolubility) vary from 1.3 to 4.3. Carbon supersaturation values are strongly correlated with the number of vesicles/cm2. There is also a correlation between number of vesicles/cm2 and vesicle size. At the Pito Seamount site, there is a negative correlation between carbon supersaturation values and observed carbon isotope fractionation between CO2 in vesicles and carbon dissolved in the glass (Δ13Cobserved). High 4He/40Ar* ratios in vesicles (from 49 to 190) are observed in both the most and least carbon supersaturated samples, while samples with intermediate carbon supersaturation have the lowest 4He/40Ar* ratios (16±1). These correlations show that most quenched melts record different disequilibrium to equilibrium states during closed-system degassing.The samples showing the highest carbon supersaturation (4.3) have the highest 4He/40Ar* (from 94 to 190). This observation shows for the first time that the 4He/40Ar* ratio can be kinetically fractionated during incomplete degassing of magmas from the magma chamber to the seafloor. This result implies that high 4He/40Ar* ratios are not a systematic indicator of open-system degassing (Rayleigh distillation) and that caution should be taken when using this ratio for any degassing correction.A two-stage degassing model, with the first stage being a closed-system degassing occurring between the source and the magma chamber, and the second stage of degassing (with a mode varying from open-system degassing to different degrees of kinetic closed-system degassing) taking place between the magma chamber and eruption on the seafloor, is the most appropriate to describe the degassing of MORB. Reconstructing initial carbon content of the magma prior to degassing and extrapolating the results to the entire ridge system results in a carbon flux of 1.6-0.3+0.6×1014 g/year. This value implies vigorous exchange of carbon between the mantle and the surface throughout geological times.  相似文献   

4.
Helium (He) and Argon (Ar) isotopic compositions of the Tertiary basic igneous rocks were determined by the high temperature melting extraction method. The selected samples for the studies included al-kaline basalts and diabases from the Jiyang basin,and the surrounding Shanwang and Qixia outcrops in the Shandong Peninsula,eastern China. The results show that the Paleogene basalts and diabases from the Jiyang basin yielded a wide range of P4 PHe abundance of (73.70-804.16)×10 P-8 Pcm P3 P STP·g P-1 P,with P3 PHe/ P4 PHe ratios of 0.374-2.959 Ra,which was lower than the MORB but evidently higher than the con-tinental crust value. The Neogene alkaline basalts from the Jiyang basin,Shanwang and Qixia outcrops have variable P4 PHe abundances ((42.34-286.72)×10-8 Pcm P3 P STP·g-1 P),and "continental crust-like" P3 PHe/ P4 PHe ratios (0.013-0.074 Ra). All of them contain atmospheric-like P40 PAr/ P36 PAr ratio (395.4-1312.7),reflecting the mantle sources with air components. Their low P3 PHe/ P4 PHe ratios are interpreted as the enrichment of the radiogenic P4 PHe mainly inherited from the mantle. He and Ar systematics show the mixing of MORB-type,air and a P4 PHe enriched member in the mantle source,suggesting that these igneous rocks originated from the depleted asthenospheric mantle mixed with an EMI component. Therefore,the present He and Ar isotopes do not support the viewpoints that the Cenozoic igneous rocks of Eastern North China were the products of mantle plume(s) activities.  相似文献   

5.
Abstract Isotopic compositions of He, Ne and Ar were measured on Plio–Quaternary alkaline basalts of Marib–Sirwah and Shuqra volcanic fields in Yemen, south-western Arabian Peninsula. Very high 3He/4He isotope ratios were found in olivine phenocrysts of some Quaternary alkaline basalts in both volcanic fields, located on the margin of the dispersed Afar mantle plume, compared with the Afar–Ethiopian province in the center of the mantle plume. This suggests that the Afar mantle plume source may consist of common component (C or focal zone (FOZO)) with variable primordial 3He/4He ratio rather than high μ mantle (HIMU) component. The three component mixing C as the Afar mantle plume, depleted mantle (DM) as upper mantle and lithospheric mantle with a hybrid enriched mantle I–II (EM I–EM II) characteristics may be adequate to explain He–Sr–Nd–Pb isotope variation for the Afar–Arabian Cenozoic volcanics. The occurrence of high 3He/4He ratios in the Marib–Sirwah volcanic field appears to show that the primitive basaltic magma, derived from the margin of the dispersed trous-like Afar mantle plume during 15–0 Ma, was not by contamination of lithospheric and upper mantle materials in comparison with that from the center of the Afar mantle plume as a result of relatively low thermal anomaly.  相似文献   

6.
Large-scale fault zones play an important role in controlling and adjusting all kinds of geological proc-esses,such as deposition,magmatism,metamorphism,metallogenesis,tectonic stress field,tectonic deforma-tion,even the movement of geological massifs,earth-quakes,and they also are the key to solving geological problems concerned,especially regional and even global structures.Due to their special geological tec-tonic significance,they are one of the main research fields of tectonic geology and …  相似文献   

7.
New geochemical and 40Ar/39Ar age data are presented from the Neogene volcanic units of the Karaburun Peninsula, the westernmost part of Western Anatolia. The volcanic rocks in the region are associated with Neogene lacustrine deposition and are characterized by (1) olivine-bearing basaltic-andesites to shoshonites (Karaburun volcanics), high-K calc-alkaline andesites, dacites and latites (Yaylaköy, Arma?anda? and Kocada? volcanics) of ~ 16–18 Ma, and (2) mildly-alkaline basalts (Ovac?k basalt) and rhyolites (Urla volcanics) of ~ 11–12 Ma. The first group of rocks is enriched in LILE and LREE with respect to the HREE and HFSE on N-MORB-normalised REE and multi-element spider diagrams. They are comparable geochemically with volcanic rocks in the surrounding regions such as Chios Island and other localities in Western Anatolia. The Ovac?k basalt is geochemically similar to the first stage early–middle Miocene volcanic rocks but differs from NW Anatolian late Miocene alkali basalts.  相似文献   

8.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5±0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5±0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

9.
Hydrothermal activity is common in the Tatun Volcano Group of northern Taiwan. Helium isotopic compositions of fumarolic samples show that mantle component occupies more than 60% in the previous study. Along with recent seismic results, a magma reservoir is inferred to have existed beneath the area of Da-you-keng, where fumarolic venting is the most active in Tatun Volcano Group. Progressive increases of HCl concentrations and SO2/H2S ratio in fumaroles from Da-you-keng have been observed since August 2004. The HCl concentration changed from almost the detection limit to thousands of ppm, even up to 30,000 ppm. SO2/H2S ratios varied from almost 0 to 3; hence SO2 became the dominated S species in this area. These variations were accompanied by rising temperature of fumaroles in the Tatun Volcano Group, especially in the area of Da-you-keng (from boiling point to 131 °C). Meanwhile, 3He/4He ratios showed a decreasing trend but returned to normal values shortly thereafter. We propose two possible processes, 1) new magma supply and 2) recent opening of fractures in local area, to explain these observations. Based on the change of 3He/4He ratio and lack of ground deformation, we consider the latter might be more plausible.  相似文献   

10.
Mount Sidley is a complex, polygenetic stratovolcano composed primarily of phonolitic and trachytic lavas and subordinate pyroclastic lithologies at the southern extremity of the Executive Committee Range, a linear chain of volcanoes in central Marie Byrd Land, Antarctica. Detailed field investigation coupled with 14 high precision 40Ar/39Ar age determinations reveal a 1.5 million year life span between 5.7 and 4.2 Ma in which three major phonolitic central vent edifices (Byrd, Weiss and Sidley volcanoes) and their calderas were developed (5.7–4.8 Ma). This was followed (4.6–4.5 Ma) by the eruption of trachytic magmas from multiple vent localities further south, and then by small volume benmoreite-mugearite lavas and tephras around 4.4–4.3 Ma at the southern end of Mount Sidley. The final phase of activity was the eruption of basanite cones at approximately 4.2 Ma. The southward migration of volcanic activity was accompanied by distinct changes in magma composition and is best explained by the sequential release of magmas stored within an intricate system of conduits and chambers in the crust by tectonically driven (magma assisted?) fracture propagation. The style of volcanic migration at Mount Sidley is emulated on a larger scale by other volcanoes in the Executive Committee Range, in which progressive southward displacement of volcanic activity corresponds with significant petrological variations between major centers.  相似文献   

11.
Eighty-nine basaltic lava flows from the northwest wall of Haleakala caldera preserve a concatenated paleomagnetic record of portions of the Matuyama-Brunhes (M-B) reversal and the preceding Kamikatsura event as well as secular variation of the full-polarity reversed and normal geomagnetic field. They provide the most detailed volcanic record to date of the M-B transition. The 24 flows in the transition zone show for the first time transitional virtual geomagnetic poles (VGPs) that move from reverse to normal along the Americas, concluding with an oscillation in the Pacific Ocean to a cluster of VGPs east of New Zealand and back finally to stable polarity in the north polar region. All but one of the 16 Kamikatsura VGPs cluster in central South America. The full-polarity flows, with 40Ar/39Ar ages spanning a total of 680 kyr, pass a reversal test and give an average VGP insignificantly different from the rotation axis, with standard deviation consistent with that for other 0-5 Ma lava flows of similar latitude. Precise 40Ar/39Ar dating consisting of 31 incremental heating experiments on 12 transitional flows yields weighted mean ages of 775.6±1.9 and 900.3±4.7 ka for the M-B and Kamikatsura transitional flows, respectively. This Matuyama-Brunhes age is ∼16 kyr younger than ages for M-B flows from the Canary Islands, Tahiti and Chile that were dated using exactly the same techniques and standards, suggesting that this polarity transition may have taken considerably longer to complete and been more complex than is generally believed for reversals.  相似文献   

12.
For lack of reliable isotopic chronological data, the metamorphic rock series in the Faku region of northern Liaoning has long been regarded as the platform basement. Recent studies reveal that these deformed and metamorphosed rocks, with a variety of protoliths of plutonic intrusions and supracrustal volcanic and sedimentary rocks, were genetically related to later ductile shearing events, and they, together with the syntectonic intrusions, constituted the large-scale Faku tectonites. In this paper, we report new 40Ar/39Ar data on hornblende, biotite, and K-feldspar from typical granitic mylonites in this suite of tectonites. The plateau age 256 Ma of FK53 hornblende and the high-temperature plateau age 262 Ma of Fk51-1 biotite should represent the cooling ages when the granites, formed as a result of Paleozoic oceanic crustal subduction beneath the continental crust or collision of multiple micro-continental blocks, were exhumed into shallow crustal levels. The plateau age 231 Ma of FK51-1 boitite and the apparent age 227 Ma of Fk51-2 K-feldspar are interpreted to record the time of ductile deformation occurring under greenschist facies conditions, i.e. the formation age of the Faku tectonites, while the age gradient from 197 Ma to 220 Ma of Fk51-2 K-feldspar probably record the subsequent stable uplift-cooling process. The tectonic exhumation event indicated by the plateau age 180 Ma of Fk51-2 K-feldspar may be associated with the onset of paleo-Pacific subduction beneath the North China plate. In addition, the U-Pb dating of FK54 zircon from later-intruded granite yields the age of crystallization of this super-unit intrusion at 159 Ma, thus establishing an upper limit for the formation age of the Faku tectonites, while the plateau age 125 Ma of Fk54 K-feldspar most likely corresponds to the rapid cooling and tectonic denudation event associated with the final collision between the Siberian plate and the North China plate. These isotopic ages provide important geochronological constraints for re-evaluating the tectonic essence of the Faku Faulted Convex and ascertaining the suturing boundary between the North China Platform and the Xingmeng Fold System.  相似文献   

13.
Neogene alkaline basaltic volcanic fields in the western Pannonian Basin, Hungary, including the Bakony–Balaton Highland and the Little Hungarian Plain volcanic fields are the erosional remnants of clusters of small-volume, possibly monogenetic volcanoes. Moderately to strongly eroded maars, tuff rings, scoria cones, and associated lava flows span an age range of ca. 6 Myr as previously determined by the K/Ar method. High resolution 40Ar/39Ar plateau ages on 18 samples have been obtained to determine the age range for the western Pannonian Basin Neogene intracontinental volcanic province. The new 40Ar/39Ar age determinations confirm the previously obtained K/Ar ages in the sense that no systematic biases were found between the two data sets. However, our study also serves to illustrate the inherent advantages of the 40Ar/39Ar technique: greater analytical precision, and internal tests for reliability of the obtained results provide more stringent constraints on reconstructions of the magmatic evolution of the volcanic field. Periods of increased activity with multiple eruptions occurred at ca. 7.95 Ma, 4.10 Ma, 3.80 Ma and 3.00 Ma.  相似文献   

14.
The Izu–Ogasawara arc contains, from east to west, a volcanic front, a back-arc extensional zone (back-arc knolls zone), and a series of across-arc seamount chains that cross the extensional zone in an east-northeast and west-southwest direction and extend into the Shikoku Basin. K–Ar ages of dredged volcanic rocks from these across-arc seamount chains and extension-related edifices in the back-arc region of the Izu–Ogasawara arc were measured to constrain the volcanic and tectonic history of the arc since the termination of spreading in the Shikoku Basin. K–Ar ages range between 12.5 and 1 Ma. Andesitic to dacitic rocks of 12.5–2.9 Ma occur mainly on the western part of the chains. The western part of the chains are the locus of volcanism behind the front which erupted mainly calc-alkaline andesitic lavas. The youngest rocks (< 2.8 Ma), characterized by cpx-ol basalt, occur along the western margin of the back-arc knolls zone. Basaltic rocks of 12.5–2.9 Ma have relatively high concentrations of Na2O (> 2.0 wt%), Zr (> 50 p.p.m.) and Y (> 20 p.p.m.) and low CaO (< 12 wt%). On the other hand, basalts of 2.8–1 Ma have lower Na2O (< 1.8 wt%), Zr (< 50 p.p.m.) and Y (< 20 p.p.m.), but significantly higher CaO (> 12 wt%). The age inferred for the initiation of back-arc rifting (∼ 2.35–2.9 Ma: Taylor 1992 ) behind the current volcanic arc coincides with the time that basalt chemistry changed drastically (eruption of the low-Na2O and high-CaO basalt). This implies that post-2.8 Ma volcanism in the back-arc knolls zone is associated with rifting. Similarly, the change in chemical composition might be explained by a different type of source mantle following rift initiation. Volcanism in the western seamounts ceased after the onset of rifting at ∼ 2.8 Ma.  相似文献   

15.
Mesozoic volcanic rocks are widespread throughout the Great Xing'an Range of northeastern China. However, there has been limited investigation into the age and petrogenesis of the Mesozoic volcanics in the eastern Great Xing'an Range. According to our research, the volcanic rocks of the Dayangshu Basin, eastern Great Xing'an Range are composed mainly of trachybasalt, basaltic andesite, and basaltic trachyandesite, with minor intermediate–basic pyroclastic rocks. In this study, the geochemistry and geochronology of the Mesozoic volcanic rocks are presented in order to discuss the petrogenesis and tectonic setting of the Ganhe Formation in the Dayangshu Basin. Zircon U–Pb dating by laser ablation inductively coupled plasma–mass spectrometry indicates that the Mesozoic lavas formed during the late Early Cretaceous (114.3–108.8 Ma). This suite of rocks exhibits a range of geochemical signatures indicating subduction‐related genesis, including: (i) calc‐alkaline to high‐K calc‐alkaline major element compositions; (ii) enrichment of large ion lithophile elements (e.g. Rb, Ba, K) and light rare earth elements (LREEs/HREEs =7.33–9.85); and (iii) weak depletion in high field strength elements (e.g. Nb, Ta, Ti). Furthermore, Sr–Nd–Pb isotopic data yield initial 87Sr/86Sr values of 0.70450–0.70463, positive εNd(t) values of +1.8 to +3.3, and a mantle‐derived lead isotope composition. Combined with the regional tectonic evolution, the results of this study suggest that the Ganhe Group lavas are derived from decompression melting of a metasomatized (enriched) lithospheric mantle, related to asthenospheric upwelling, which resulted from lithospheric mantle delamination and produced extension of the continental margin following the subduction of the Paleo‐Pacific Plate.  相似文献   

16.
We present 24 40Ar/39Ar ages for the youngest volcanic products from the Alban Hills volcanic district (Rome). Combined with petrological data on these products, we have attempted to define the chronology of the most recent phase of activity and to investigate the magma evolution of this volcanic district. The early, mainly explosive activity of the Alban Hills spanned the interval from 561±1 to 351±3 ka. After approximately 50-kyr of dormancy, a mainly effusive phase of activity took place, accompanied by the strombolian activity of a small central edifice (Monte delle Faete). This second phase of activity spanned the interval 308±2 to 250±1 ka. After another dormancy period of approximately 50-kyr, a new, hydromagmatic phase of activity started at 200 ka at several centers located to the southwest of the Monte delle Faete edifice. After an initial recurrence period of approximately 50-kyr, which also characterized this new phase of activity, the longest dormancy period (approximately 80-kyr) in the history of the volcanic district preceded the start of the activity of the Albano and Giuturna centers at 70±1 ka. Results of our study suggest a quasi-continuous magmatic activity feeding hydromagmatic centers with a new acme of volcanism since around 70 ka. Based on data presented in this paper, we argue that the Alban Hills should not be considered an extinct volcanic district and a detailed re-assessment of the volcanic hazard for the area of Rome is in order. Published online: 4 April 2003 Editorial responsibility: J. Donnelly-Nolan  相似文献   

17.
Subduction‐related volcanic rocks are widespread in the Central Pontides of Turkey, and represented by the Hamsaros volcanic succession in the Sinop area to the north. The volcanic rocks display high‐K calc‐alkaline, shoshonitic and ultra‐K affinities. 40Ar/39Ar age data indicate that the rocks occurred during the Late Cretaceous (ca 82 Ma), and the volcanic suites were coeval. Primitive mantle‐normalized trace element patterns of all the lavas are characterized by strong enrichments in large ion lithophile elements (LILE) (Rb, Ba, K, and Sr), Th, U, Pb, and light rare earth elements (LREE; La, Ce) and prominent negative Nb, Ta, and Ti anomalies, all typical of subduction‐related lavas. There is a systematic increase in the enrichment of incompatible trace elements from the high‐K calc‐alkaline lavas through the shoshonitic to the ultra‐K lavas. In addition, the shoshonitic and ultra‐K lavas have significantly higher 87Sr/86Sr (0.70666–0.70834) and lower 143Nd/144Nd (0.51227–0.51236) initial ratios than coexisting high‐K calc‐alkaline lavas (87Sr/86Sr 0.70576–0.70613, 143Nd/144Nd 0.51245–0.51253). Geochemical and isotopic data show that the shoshonitic and ultra‐K rocks cannot be derived from the high‐K calc‐alkaline suite by any shallow level differentiation process, and point to a derivation from distinct mantle sources. The shoshonitic and ultra‐K rocks were derived from metasomatic veins related to melting of recycled subducted sediments, but the high‐K calc‐alkaline rocks from a lithospheric source metasomatized by fluids from subduction zone.  相似文献   

18.
Samples of mylonite, ultramylonite and phyllonite were collected from 5 localities in the Anhui part of the Tan-Lu fault zone for40Ar/39Ar chronological studies. Among them 4 samples from 3 localities on the eastern margin of the Dabie orogenic belt yielded40Ar/39Ar plateau ages of 128 —132 Ma; and 2 samples from the western margin of the Zhangbalin uplift and eastern margin of the Bengbu uplift gave the same40Ar/39Ar plateau ages of 120 Ma. Isochron analyses and other lines of evidence suggest that the data are reliable. The data are interpreted as cooling ages of sinistral strike-slip deformation of the Tan-Lu fault zone. The younger ages from the north might be related to slower strike-slip rising. These results indicate that the large-scale left-lateral displacement in the Tan-Lu fault zone took place in the Early Cretaceous, rather than in Late Triassic (Indosinian) as proposed by some geologists. Therefore, this fault zone is an intracontinental wrench fault rather than a transform fault or suture line developed during formation of the Dabie orogenic belt.  相似文献   

19.
Among the youngest lava flows of the Pinacate volcanic field, Sonora, Mexico, is a large outpouring of tholeiite, the Ives flow. This tube-fed pahoehoe flow contrasts sharply with other Pinacate lavas in its great volume, alkali-poor composition and morphologic features, which include novel small structures named “spatter tubes.” Despite its K-poor character, young age, and the presence of excess 40Ar, we determined a 40Ar/39Ar age on samples of this flow at 13 ± 3 ka. Such an age determination is made possible via careful monitoring of the mass discrimination of the mass spectrometer and by stacking results from multiple incremental-heating experiments into a single, composite isochron. This age is among the youngest ever to be determined with such precision by the 40Ar/39Ar method on a K-poor tholeiite.  相似文献   

20.
A case study of the influx of upper mantle fluids into the crust   总被引:2,自引:0,他引:2  
Geochemical and geophysical investigations in the Bohai Gulf and adjacent areas, China, indicate that uplift of the high-conductivity layer in the lithosphere coincides with the area of high heat flow. In this area are distributed abundant oil and gas fields in a Tertiary fault basin and also large quantities of basaltic rocks. Gas fields, mostly CO2 bearing, occur at the basin margins, where a widespread alkaline olivine basalt has high contents of gold. Geochemical prospecting of the surface (soil and soil gas) in the area indicates that there is an anomaly zone of large-scale gold mineralization, and large gold deposits have been found in this area. Isotopic study demonstrates that CO2 in the volcanic rocks and in the CO2-bearing gas deposits are all derived from the mantle. Experiments show that Au- and CO2-bearing hydrothermal fluids separated into vapor phase and liquid phases respectively due to a reduction of pressure and temperature over the temperature range from 250 to 290°C and at 22 M Pa. Au appears in the vapor phase rich in CO2. That proves that it is possible that CO2-bearing aqueous fluids (in gas phase) can carry gold and transport it from deeper parts of lithosphere to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号