首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have calculated the emission spectra of hydrogen and sodium atoms in the cool part of prominence models which satisfy simultaneously the constraints of radiative transfer, statistical equilibrium and charge-particle conservations.In the considered range of our model parameters, emission strengths of H and Nai D lines increase with the temperature and the total number density. Low-pressure models raise the ionization rate highly but yield very weak Nai D line intensities, since these model prominences contain small amounts of free electrons and sodium atoms which have a deep relation with the formation of sodium lines. We find that sodium D lines should be emitted in the high pressure region of prominences, and that their intensities are difficult to attain in the cool core of any model prominence with a temperature as low as 4000 K. In order to explain consistently the spectral emissions of H and Nai D lines observed in quiescent prominences, a total number density higher than 4 x 1011 cm-3 and a temperature over 5000 K are required at least in the cool part of prominences.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 282.  相似文献   

2.
Two-dimensional distributions of kinetic temperature, density and turbulent velocity are obtained for four quiescent prominences observed at the Peruvian eclipse of 12 November, 1966.
  1. The kinetic temperature derived from line widths is around 6000–7000 K in the central part of prominences and rises to 12000K in both edges and possibly in the top of prominences.
  2. The turbulent velocity shows a similar tendency, being 7–9 km/sec in the central part and ≈ 20 km/sec in the outer part. The turbulent velocity also increases slowly towards higher heights in the prominence.
  3. The electron density derived both from the Stark effect and the intensity ratio of the continuous spectra turns out to be about 1010.2–1010.6 cm?3 in the central portion of two prominences.
  4. From the width and the intensity, neutral helium lines are shown to originate in the same region as hydrogen and metallic lines where the kinetic temperature goes down to 6000 K. This indicates that neutral helium is emitted after the ionization due to UV radiation from the corona and the transition region.
  相似文献   

3.
The Na i D emission lines are found to brighten temporarily in restricted regions of quiescent prominences and we call the phenomena the Na i D brightenings. The comparison of observed intensities of Na i D lines with model calculations shows that the phenomena is attributed to a kind of local activation of quiescent prominences accompanied by mass motions. The Na i D lines are emitted from extraordinarily high pressure regions in which the pressure rises up to 0.37 2.7 dyn cm–2 and the temperature seems to be in the range between 5800 7000 K. The line-of-sight velocity of the mass motions amounted to several tens of km s–1 in some Na i D emitting prominences investigated. The life time of the phenomena is estimated to be about several tens of minutes.  相似文献   

4.
An observed relation between line-of-sight velocities and the longitudinal component of the magnetic field in quiescent prominences is discussed. Weak fields in quiescent prominences are associated with large velocities determined from Doppler shifts of resolved emission knots and Doppler line widths measured in Ca ii K line. It is suggested that the observed irregular motions in prominences are driven by photospheric horizontal convection coupled by the prominence magnetic field. An energy flux of 3 × 105 ergs cm–2 sec–1 present in the form of Alfvén waves in quiescent prominences is consistent with the observations.  相似文献   

5.
With thespectro-coronagraph and themultichannel subtractive double pass spectrograph (MSDP) at the Pic du Midi Observatory two quiescent prominences were observed simultaneously. From the spectro-coronagraph observations 2D maps of Hei 10830 , Fexiii 10798 and 10747 line intensities were obtained. In addition, we obtained 2D maps of the ratioR of the two iron lines. This ratio is used as a diagnostic for determining the density of the hot coronal plasma surrounding prominences. We found that the electron density is higher at the location of the prominences than in the corona, whereas small regions (40) of lower electron density are unevenly distributed around the prominences indicating that the surrounding corona is highly inhomogeneous. The density of the cavity is reduced by a factor 1.5 compared to the density of the prominence environment (5 × 108 cm–3). We discuss the existence of cavities around these prominences according to the orientation of their axes relative to the line of sight and according to the velocity field inside the prominences. Constraints on models for prominence formation are derived.  相似文献   

6.
It is shown that the emission of quiescent and loop prominences in the helium D3 line and in the 4686 Å line of He+ respectively, occurs at low temperatures, of the order of 7000 K.The ionization of neutral helium is produced by short-wave solar radiation, which is absorbed in the outer layers of filaments composing a prominence. The population of helium triplet levels in prominences is determined by recombinations and subsequent resonance scattering of photospheric radiation. Transitions from triplet to singlet levels caused by electron collisions considerably reduce the line brightness.Emission of ionized helium in the 4686 Å line arises in prominence surface layers as well. In quiescent prominences the emission is very faint and is due to recombination; the second ionization is caused by the far ultraviolet radiation.In flare-like events ionized helium emits due to charge-exchange collisions. The symmetrical resonance charge-exchange of -particles is caused by helium ions in corpuscular streams which are probably generated in photospheric layers. Due to increased radiation losses the temperature of the prominence under the action of the stream is negligibly increased. With a stream density equal to 5 × 108 cm-3 and velocity 300 km/s the theoretical intensity of the 4686 He+ line is some hundreds of microängströms and agrees with observations of Goldberg-Rogozinskaya (1962, 1965) and others.  相似文献   

7.
The solar transition region in the neighbourhood of prominences has been studied from observations with the Ultraviolet Spectrometer and Polarimeter of NASA's Solar Maximum Mission satellite. Dopplergrams from observations of the transition-region lines Civ 1548 Å and Siiv 1393 Å, which are formed at about 105 K, give velocity amplitudes typically in the range ± 15 km s-1. Prominences are found to be located very close to dividing lines between areas of up- and down-draughts in the transition-region. The observed pattern suggests that the 105 K gas flows take place within arcades of magnetic loops, which most likely are part of the supporting magnetic structure for the prominence matter. An additional band of blue-ward Doppler shifts is frequently seen close to quiescent prominences. This may be the source of outward flowing matter along the helmet streamers above filament channels.  相似文献   

8.
Using slab model atmospheres that are irradiated from both sides by photospheric, chromospheric, and coronal radiation fields we have determined the ionization and excitation equilibrium for hydrogen.The model atom consists of two bound levels (n = 1 and n = 2) and a continuum. Ly- was assumed to be optically thick with the transition in detailed radiative balance. The Balmer continuum was assumed to be optically thin with the associated radiative ionization dominated by the photospheric radiation field (T rad = 5940 K). The ionization equilibrium was determined from an exact treatment of the radiative transfer problem for the internally generated Ly-c field and the impressed chromospheric and coronal field (characterized by T rad = 6500K).Our calculations corroborate the hypothesis that N2, the n = 2 population density, is uniquely determined by the electron density N e. We also present ionization curves for 6000K, 7500K, and 10000K models ranging in total hydrogen density from 1 × 1010/cm3 to 3 × 1012/cm3. Using these curves it is possible to obtain the total hydrogen density from the n = 2 population density in prominences and spicules.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
Pneuman  G. W. 《Solar physics》1983,88(1-2):219-239
A model for solar quiescent prominences nested in a Figure 8 magnetic field topology is developed. This topology is argued to be the natural consequence of the distention of bipolar regions upward into the corona. If this distention is slow enough so that hydrostatic equilibrium holds approximately along the field lines, the transverse gas pressure forces fall exponentially with height whereas the inward Lorentz forces fall as a power law. At a low height in the corona, the pressure forces cannot balance the Lorentz forces provided the field lines remain tied to the photosphere and an inward collapse with subsequent reconnection at the point of closest approach should occur. Because of initial shear in the magnetic field, the reconnection would produce isolated helices above the point of reconnection since field lines would not interact with themselves but with their neighbors. This resulting topology produces a field above the elevated neutral line which is opposite in polarity to that of the photospheric field as in the current sheet models of Kuperus and Tandberg-Hanssen (1967). Raadu and Kuperus (1973), Kuperus and Raadu (1974), and Raadu (1979) and in agreement with recent observations of Leroy (1982), and Leroy et al. (1983).Assuming the isolated helices formed by reconnection are insulated from coronal thermal conduction and heating, the radiative cooling process and condensation is considered for the temperature range of 104-6000 K. This condensation results in a steady downflow to the bottom of the helices as the temperature scale-height falls, thus forming a dense, cool, prominence at the bottom of the helical configuration resting on the elevated neutral line with the remainder of the helix being essentially evacuated of material. We identify this neutral line at the bottom of the prominence with the sharp lower edge often seen when viewing quiescent prominences side-on and the evacuated helix with the coronal cavity observed around prominences when seen during total eclipses.Downflow speeds associated with the condensation process are calculated for prominence temperatures and yield velocities in the range of the observed downflows of about 1 km s–1.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
We construct the maps of temperatures, geometrical thicknesses, electron densities and gas pressures in a quiescent prominence. For this we use the RGB signal of the prominence visible-light emission detected during the total solar eclipse of 1 August 2008 in Mongolia and quasi-simultaneous Hα spectra taken at Ond?ejov Observatory. The method of disentangling the electron density and geometrical (effective) thickness was described by Jej?i? and Heinzel (Solar Phys. 254, 89?–?100, 2009) and is used here for the first time to analyse the spatial variations of prominence parameters. For the studied prominence we obtained the following range of parameters: temperature 6000?–?15?000 K, effective thickness 200?–?15000 km, electron density 5×109?–?1011 cm?3 and gas pressure 0.02?–?0.2 dyn?cm?2 (assuming a fixed ionisation degree n p/n H=0.5). The electron density increases towards the bottom of the prominence, which we explain by an enhanced photoionisation due to the incident solar radiation. To confirm this, we construct a two-dimensional radiative-transfer model with realistic prominence illumination.  相似文献   

11.
I. Lerche  B. C. Low 《Solar physics》1977,53(2):385-396
We present a theoretical model of quiescent prominences in the form of an infinite vertical sheet. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975b) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. We assume that the prominence plasma emits more radiation than it absorbs from the radiation fields of the photosphere, chromosphere and corona, and we interpret the above hypothetical heat sink to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 1011 particles cm–3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, we discuss the physical properties implied by the model. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence.  相似文献   

12.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   

13.
Ulrich Anzer 《Solar physics》1972,24(2):324-335
A 2-dimensional model of the magnetic field associated with quiescent prominences is presented. The coronal field is assumed to be current-free, currents are only allowed in the photosphere and inside the prominence. The prominence is taken to be infinitely thin. For this model a method is given to calculate the field configuration from the observed normal component of the field both in the photosphere and the prominence. The normal field components are inferred from disc observations and H limb observations. The sheet currents inside the prominence are calculated and the resulting Lorentz force is compared with the gravitational force. Within the range of uncertainty in the total hydrogen density of quiescent prominences it is possible to give models where the gravity is balanced by the Lorentz force.  相似文献   

14.
We have analyzed all lines in the MIR (8 to 20 micron) spectra of a quiescent and two time-frames of an active prominence. In the quiescent prominence, in addition to those lines found by Zirker (1985), we have identified a higher excitation hydrogen line and two helium recombination lines. Accounting for instrumental broadening, we can further separate out the Doppler and the Stark contributions to the line width. The former yields maximum temperatures of 6200 K, 34000 K and 12000 K and the latter electric field strengths of 7, 17, and 10 V cm-1 for the above prominences, respectively. We show that these electric fields when divided by 2.2 are equal to the normal electric field in Holtsmark's quasi-static Stark broadening theory. Hence, we obtain electron densities of N3=2.4(0.3), 9.1(1.2), and 5.5(0.6) in units of 1010 cm-3 respectively. Using the same assumptions as made by Zirker, namely, (1) the strongest line (7-6) is optically thin, (2) the population of the lower level (n=6) is determined by direct radiative recombination and photo-ionization, (3) the equality of proton and electron densities, and (4) the thickness of the prominence is at least 108 cm, we derive a new inequality, Ne 1.83 × 108 T0.75 e-2195/T. Substituting our maximum temperatures into the right-hand side, we find upper bound Ne values of 9, 43, and 30 in the same units as above. These upper bound values are comfortably higher than our measurement, unlike those of Zirker's derived from the same set of assumptions. We have also observed the helium recombination spectrum which has been postulated by Tandberg-Hanssen as one of three possible ways of equilibrating the triplet/singlet ratio. Surprisingly, it is present in the quiescent as well as in the active prominence. We show that no meaningful values can be found for the turbulent velocities by combining the helium with the hydrogen line widths.  相似文献   

15.
We discuss the longitudinal component of the magnetic field, B , based on data from about 135 quiescent prominences observed at Climax during the period 1968–1969. The measurements are obtained with the magnetograph which records the Zeeman effect on hydrogen, helium and metal lines. Use of the following lines, H; Hei, D3, Hei, 4471 Å; Nai, Di and D2, leads to the same value for the observed magnetic field component in these prominences. For more than half of the prominences their mean field, B , satisfy the inequalities 3 G B 8 G, and the overall mean value for all the prominences is 7.3 G. As a rule, the magnetic field enters the prominence on one side and exits on the other, but in traversing the prominence material, the field tends to run along the long axis of the prominence.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   

17.
The present work is a review of papers related to the theory of prominence radiation. Special attention is paid to stationary equations and the theory of radiation diffusion in the lines and continua of hydrogen, helium and metals.We conclude that prominences are low-temperature formations T e 7000 K, of low density 1012 particles per cm3, n e 1011 cm–3, effective thickness 109 cm, and that the chemical composition of prominences and that of the Sun's atmosphere are the same. The prominence radiation in the lines of hydrogen, helium and metals is due mainly to quasiresonance scattering of the photospheric radiation.  相似文献   

18.
Quiescent prominences It is found that Heii 4686 is emitted in the same cold region of 10000 K as hydrogen, metal and neutral helium emission lines. This conclusion is based on the finding that the observed width of 4686 is the same as the calculated width of 4686. The calculated width is derived from the observed widths of hydrogen and metallic lines. The large intensity of Heii 4686 in 10000 K can be explained by the ionization of Heii due to the UV radiation below 228 Å that comes from the corona and the transition region.Loop prominences The very broad width (30 to 50 km s–1) of 4686 for two post-flare loop prominences shows that the Heii line is emitted in hot regions different from regions of hydrogen and metal emission. From the widths of the Balmer lines and many metallic lines the kinetic temperature for one loop is found to be 16000 K in one part and 7600 K in another part. The electron densities are 1012.0 cm–3 and less than 1011.0 cm–3 respectively.Chromosphere The intensity of 4686 in the chromosphere can be interpreted in terms of a temperature of 10000 K with the ionization due to UV radiation. But, since observations of the width of 4686 are not available, a definitive conclusion for the chromosphere cannot be reached.  相似文献   

19.
Observations of the Ca ii H, K, and infrared triplet lines are compared with theoretical predictions from the slab models of Heasley and Milkey (1976). While the theoretical models describe the hydrogen and helium emission spectra of quiescent prominences satisfactorily the predicted Ca ii lines are systematically too bright. The most likely reason for the discrepancy is the inapplicability of the symmetric slab prominence model for lines which become even moderately optically thick in prominences.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Visiting scientist at Kitt Peak National Observatory.  相似文献   

20.
A study has been made of fine structure wavelength shift in the K line spectra from quiescent prominences. A persistent small scale motion is found in the prominence main body. In places where we see the characteristic thread like fine structure in the accompanying H filtergrams the average line-of-sight velocity amplitude is about 1 km s–1. A higher velocity ( 4 km s–1) is associated with a slightly coarser, mottled prominence fine structure. In the low lying regions, connecting the prominence body and the chromosphere, we do not detect any fine structure line shift (v 1/2 km s–1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号