首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Grass buffer strips impact the hydrology of flow and consequently the fate of sediment. A complex process‐based model is developed to predict flow characteristics as well as sediment deposition and transport upstream, and within grass strips. The model is capable of estimating the proportion and amount of different sediment particle size classes in the outflow. The modified Green–Ampt equation was used to simulate infiltration. Gradually varied flow and kinematic wave approximation were used to model flow characteristics upstream and within grass strips. The GUEST model approach has been modified in order to use its basic approaches in sediment transport module in grass strips. Model predictions agree well with the results of two sets of controlled experiments. The bias, coefficient of model efficiency and the root mean squared error of the modelled efficiency of grass strips in reducing sediment concentration were 0.93–0.99, 0.58–0.99 and 8.9–12.7, respectively. The sensitivity analysis showed that the initial soil moisture and flow rate are the most sensitive parameters in predicting runoff loss. Increasing the slope steepness and flow rate dramatically decreases the efficiency of grass strips in reducing sediment concentration and mass. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Soil and water conservation practices have been promoted for a long time, in order to sustain agricultural activities and prevent environmental pollution. Vegetated filter strips (VFS) have been used to reduce sediment pollution into water bodies at or near the pollutant source. However, factors effecting VFS performance under natural conditions have not been well understood owing to the physical, time and financial limitations of field experiments. The use of well‐validated simulation models to understand the performance of VFS and factors affecting sediment deposition is highly justified. The objective of this research is to investigate sediment trapping in VFS and to study various factors affecting VFS performance using the simulation model VFSMOD, which was developed by researchers at University of North Carolina. Recently, VFSMOD has been validated successfully by using 21 filters with varying length, slope and vegetated cover. A wide range of five parameters was selected for the simulations, namely filter length, filter slope, manning roughness coefficient, soil type and characteristics of incoming sediment from adjacent fields. Computer simulations revealed that the length of filter is the most significant factor affecting sediment trapping in VFS. The relative increase in trapping efficiencies was not linearly related to an increase in filter length. Inflow sediment class also has a major influence on sediment trapping in VFS. The trapping efficiency of clay sediments in a 15 m length VFS was 47% compared with 92% for silt from incoming sediment. Manning roughness coefficient had a moderate effect on sediment trapping and was more significant in short filters. Land slope and soil type of VFS had a minor influence on the performance of VFS. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Sediment transport capacity is a key concept in determining rates of detachment and deposition in process-based erosion models, yet limited studies have been conducted on steep slopes. We investigated the effects of sediment size on transport capacity of overland flow in a flume. Unit flow discharge ranged from 0.66 to 5.26?×?10-3 m2 s-1, and slope gradient varied from 8.7 to 42.3%. Five sediment size classes (median diameter, d 50, of 0.10, 0.22, 0.41, 0.69 and 1.16 mm) were used. Sediment size was inversely related to transport capacity. The ratios of average transport capacity of the finest class to those of the 0.22, 0.41, 0.69 and 1.16 mm classes were 1.09, 1.30, 1.55 and 1.92, respectively. Sediment transport capacity increased as a power function of flow discharge and slope gradient (R2?=?0.98), shear stress (R2?=?0.95), stream power (R2?=?0.94), or unit stream power (R2?=?0.76). Transport capacity generally decreased as a power function of sediment size (exponent?=??0.35). Shear stress and stream power predicted transport capacity better than unit stream power on steep slopes when transport capacity was <7 kg m-1 s-1. Sediment transport capacity increased linearly with mean flow velocity. Critical or threshold velocity increased as a power function of sediment size (R2?=?0.93). Further studies with fine soil particles are needed to quantify the effects of sediment size on transport capacity of overland flow on steep slopes.

Citation Zhang, G.-H., Wang, L.-L., Tang, K.-M., Luo, R.-T. & Zhang, X.C. (2011) Effects of sediment size on transport capacity of overland flow on steep slopes. Hydrol. Sci. J. 56(7), 1289–1299.  相似文献   

4.
Effects of sediment load on hydraulics of overland flow on steep slopes   总被引:6,自引:0,他引:6  
Eroded sediment may have significant effects on the hydraulics of overland flow, but few studies have been performed to quantify these effects on steep slopes. This study investigated the potential effects of sediment load on Reynolds number, Froude number, flow depth, mean velocity, Darcy–Weisbach friction coefficient, shear stress, stream power, and unit stream power of overland flow in a sand‐glued hydraulic flume under a wide range of hydraulic conditions and sediment loads. Slope gradients were varied from 8·7 to 34·2%, unit flow rates from 0·66 to 5·26×10?3 m2 s?1, and sediment loads from 0 to 6·95 kg m?1 s?1. Both Reynolds number (Re) and Froude number (Fr) decreased as sediment load increased, implying a decrease in flow turbulence. This inverse relationship should be considered in modeling soil erosion processes. Flow depth increased as sediment load increased with a mean value of 1·227 mm, caused by an increase in volume of sediment‐laden flow (contribution 62·4%) and a decrease in mean flow velocity (contribution 37·6%). The mean flow velocity decreased by up to 0·071 m s?1 as sediment load increased. The Darcy–Weisbach friction coefficient (f) increased with sediment load, showing that the total energy consumption increased with sediment load. The effects of sediment load on f depended on flow discharge: as flow discharge increased, the influence of sediment load on f decreased due to increased flow depth and reduced relative roughness. Flow shear stress and stream power increased with sediment load, on average, by 80·5% and 60·2%, respectively; however, unit stream power decreased by an average of 11·1% as sediment load increased. Further studies are needed to extend and apply the insights obtained under these controlled conditions to real‐world overland flow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Little information is available concerning the performance of grass strips for erosion control from steep cropland. An experiment was conducted on 5‐m‐long grass strips with slopes of 3°~15° that were subjected to silt laden runoff and simulated rainfall, to investigate the sediment trapping processes. The grass strips had three treatments including intact grass control (C), no litter (dead grass material covering the soil surface was removed) (NL), and no litter or leaves (only 2~3 cm grass stems and roots were reserved) (NLL). Generally the grass strips had a high effectiveness in trapping sediment from steep cropland runoff. Sediment trapping efficiency (STE) decreased with increasing slope gradient, and even for a 15° slope, STE was still more than 40%. Most sediment deposited in the backwater region before each grass strips. The removal of grass litter or/and leaves had no significant influence on STE. The sediment median size (D50) in inflow was greater than that in outflow, and the difference (ΔD50) decreased with increasing slope. A positive power relationship between STE and ΔD50 can be obtained. Grass strips were more effective in trapping sediments coarser than 10 or 25 µm, but sediments finer than 1 µm were more readily removed from runoff than particles in the range of 2 to approximately 10 µm. Grass litter had less influence on flow velocity than leaves because the deposited sediment partially covered the litter layer. Mean flow velocity and its standard deviation were negatively correlated with STE, and they can help make good estimation of STE. Results from this study should be useful in planting and managing forage grass to effectively conserve soil loss by runoff from steep slopes on the Loess Plateau of China. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
There is little information on the performance of vegetative filter strips (VFS) in filtering high‐concentration sediment from subcritical overland flow. Flume experiments on simulated grass strips were conducted using combinations of three slope gradients (3°, 9° and 15°), five 1‐m‐wide slope positions (from upslope to downslope), two flow rates (60 and 20 L min‐1 m‐1) and sediment concentrations of 100–300 kg m‐3 under simulated rainfall and non‐rainfall conditions. The results showed that sediment deposition efficiency increased with VFS width as a power function. Rainfall significantly reduced sediment deposited within VFS. Higher sediment concentration corresponded to a larger sediment deposition load but reduced deposition efficiency. Flow rate had a negative effect on deposition efficiency but no effect on deposition load. Sediments were more easily deposited at the upper slope position than downslope, and the upper slope position had a higher percentage of coarse sediments. The deposited sediment had significantly greater median diameters (D50) than the inflow sediment. A greater proportion of coarse sediments larger than 25 µm in diameter were deposited, and particles smaller than 1 µm and of 10–25 µm had a better deposition performance than particles of 1–10 µm. Rainfall reduced the deposited sediment D50 at a slope gradient of 3° and had no significant influence on it at 9° or 15°. A higher sediment concentration led to a smaller D50 of the deposited sediment. Rainfall had no significant effect on overland flow velocity. Both the deposited sediment load and D50 decreased with increasing flow velocity, and flow velocity was the most sensitive factor impacting sediment deposition. The results from this study should be useful to control sediment flowing into rivers in areas with serious soil erosion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The impact of vegetated filter strips (VFS) on sediment removal from runoff has been studied extensively in recent years. Vegetation is believed to increase water infiltration and decrease water turbulence thus enhancing sediment deposition within filter media. In the study reported here, field experiments have been conducted to examine the efficiency of vegetated filter strips for sediment removal from cropland runoff. Twenty filters with varying length, slope and vegetated cover were used under simulated runoff conditions with an average sediment concentration of 2700 mg/L. The filters were 2, 5, 10 and 15 m long with a slope of 2·3 and 5% and three types of vegetation. Three other strips with bare soil were used as a control. The experimental results showed that the average sediment trapping efficiency of all filters was 84% and ranging from 68% in a 2‐m filter to as high as 98% in a 15‐m long filter compared with only 25% for the control. The length of filter has been found to be the predominant factor affecting sediment deposition in VFS up to 10 m. Increasing filter length to 15 m did not improve sediment trapping efficiency under the present experimental conditions. The rate of incoming flow and vegetation cover percentage has a secondary effect on sediment deposition in VFS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Vegetative filter strips (VFSs) can effectively trap sediment in overland flow, but little information is available on its performance in controlling high‐concentration sediment and the runoff hydraulics in VFS. Flume experiments were conducted to investigate the sediment deposition, hydraulics of overland flow and their relationships in simulating VFS under a great range of sediment concentrations with four levels of vegetation cover (bare slope and 4%, 11% and 17%) and two flow rates (15 and 30 L min?1). Sediment concentrations varied from 30 to 400 kg m?3 and slope gradient was 9°. Both the deposited sediment load and deposition efficiency in VFS increased as the vegetation cover increased. Sediment concentration had a positive effect on the deposited load but no effect on deposition efficiency. A lower flow rate corresponded to greater deposition efficiency but had little effect on deposited load. Flow velocities decreased as vegetation cover increased. Sediment concentration had a negative effect on the mean velocity but no effect on surface velocity. Hydraulic resistance increased as the vegetation cover and sediment concentration increased. Sediment deposition efficiency had a much more pronounced relationship with overland flow hydraulics compared with deposited load, especially with the mean flow velocity, and there was a power relationship between them. Flow regime also affected the sediment deposition efficiency, and the efficiency was much higher under subcritical than supercritical flow. The results will be useful for the design of VFS and the control of sediment flowing into rivers in areas with serious soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The Manning equation is one of the most widely used formulae for calculating the velocity of shallow overland flow in hydrological and erosion models. Precise estimation of the Manning's friction coefficient (n) is critical to determining overland flow and soil erosion processes. Few studies have been conducted to quantify the effects of sediment load on Manning's n on steep slopes. This study was conducted to investigate the potential effects of sediment load on Manning's n in a flume with a fixed bed, under wide ranges of hydraulics and sediment loads. Slope gradient varied from 8·7 to 34·2%, unit flow rate from 0·66 to 5·26 × 10?3 m2 s?1, and sediment load from 0 to 6·95 kg m?1 s?1. The Reynolds number ranged from 350 to 5899. Results showed that Manning's n varied in both sediment‐free and sediment‐laden flows ranging from 0·012 to 0·055. The apparent Manning's coefficients of sediment‐laden flow were much greater than those of sediment‐free flow. The mean Manning coefficient of sediment‐laden flow was 51·27% greater than the mean value of sediment‐free flow. For sediment‐laden flow, Manning's n could be estimated with a power function of unit flow discharge and sediment content. Further studies are needed to quantify the potential effects of sediment load on the Manning's n on erodible beds and in fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Based on the analysis of the results of flume experiments and on a simplified theoretical approach, a formula is proposed for the evaluation of the total solid load in a water–sediment current. The obtained results show that the sediment concentration of the water–sediment currents gradually varies from the typical values of bed load to those typical of debris flows, even when the clay concentration in the whole current is not negligible in comparison with the total solid load. The proposed simplified approach confirms the theoretical results obtained by the application of more complex rheological models. Besides the proposed theoretical interpretation of the laboratory experimental results seems to confirm a unified view of the different types of solid transport, that has been presented elsewhere.  相似文献   

11.
Modelling mean annual sediment yield using a distributed approach   总被引:3,自引:0,他引:3  
In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10–5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
《国际泥沙研究》2023,38(2):265-278
Ecological engineering plays an increasingly significant role in mountain hazard control, but the effect of species selection and arrangement (e.g., row spacing and stem spacing) on debris flow suppression is still unclear. To further understand the interception efficiency of shrub arrangement parameters on debris flow and explore the difference with slow hydraulic erosion, sixteen sets of small-scale flume experiments with different stem and row spacings were done to study the effects of shrubs on debris flow severity, flow rate, velocity, and particle size. The results suggest that, for a dilute debris flow, sediment interception effectiveness (27.4%–60.9%) decreases gradually as stem spacing increases. Moreover, as row spacing increases, flow velocity reduction (34.4%–44.9%) and flow reduction (18.5%–47.4%) gradually decrease; and the bulk density reduction (0.5%–5.3%) and sediment interception increase initially and then decrease. In contrast, for a viscous debris flow, the flow reduction, flow velocity reduction, and sedimentation interception decrease gradually as the stem spacing increases. As row spacing increases, the flow velocity reduction, flow reduction, and sediment interception all increase initially and then decrease. A formula for the flow velocity of dilute debris flow after the filter strip was derived based on the energy conservation law and Bernoulli's equation, confirming that debris flow movement is closely related to the degree of vegetation cover. This research strengthens the current understanding of the effectiveness of vegetation in debris flow disaster prevention and control and can guide practical applications.  相似文献   

13.
Agricultural soil erosion is largely attributed to arable intensification and increased mechanization. Runoff from arable land and intensively managed grassland transports sediment and contaminants across the landscape and into watercourses, causing crop loss, land degradation, and water quality issues. One low-cost and low-maintenance nature-based mitigation approach is the implementation of vegetated buffer strips (VBS): grassland sited along field margins to trap sediment and contaminants, reducing transportation and diffuse pollution rates. GIS modelling using remotely sensed landscape indices and land parcel data can provide an efficient means of identifying priority areas for intervention at sub-catchment or farm system scales. We develop and test a scalable runoff risk model in the lower Rother catchment, West Sussex. The model uses the Normalized Difference Vegetation Index (NDVI) applied to satellite images as an erodibility proxy and identifies locations along pathways that are conceivably at greatest risk of sediment accumulation and transfer, guided by field observations. We assess current and historical field boundaries near high-risk locations, evaluating the potential capacity of their margins to contribute to runoff risk reduction using an innovative ranking system. Recommendations are made for VBS implementation and the value of historical field boundary and margin restoration is discussed. Our method offers a rapid approach with minimal data requirements to identify high-risk sediment runoff locations and priority sites for intervention. The tool has the potential to guide decision-makers responsible for targeting and implementing soil erosion and runoff control measures such as VBS, while also maximizing agri-environmental and cultural benefits.  相似文献   

14.
Many forested steeplands in the western United States display a legacy of disturbances due to timber harvest, mining or wildfires, for example. Such disturbances have caused accelerated hillslope erosion, leading to increased sedimentation in fish‐bearing streams. Several restoration techniques have been implemented to address these problems in mountain catchments, many of which involve the removal of abandoned roads and re‐establishing drainage networks across road prisms. With limited restoration funds to be applied across large catchments, land managers are faced with deciding which areas and problems should be treated first, and by which technique, in order to design the most effective and cost‐effective sediment reduction strategy. Currently most restoration is conducted on a site‐specific scale according to uniform treatment policies. To create catchment‐scale policies for restoration, we developed two optimization models – dynamic programming and genetic algorithms – to determine the most cost‐effective treatment level for roads and stream crossings in a pilot study basin with approximately 700 road segments and crossings. These models considered the trade‐offs between the cost and effectiveness of different restoration strategies to minimize the predicted erosion from all forest roads within a catchment, while meeting a specified budget constraint. The optimal sediment reduction strategies developed by these models performed much better than two strategies of uniform erosion control which are commonly applied to road erosion problems by land managers, with sediment savings increased by an additional 48 to 80 per cent. These optimization models can be used to formulate the most cost‐effective restoration policy for sediment reduction on a catchment scale. Thus, cost savings can be applied to further restoration work within the catchment. Nevertheless, the models are based on erosion rates measured on past restoration sites, and need to be updated as additional monitoring studies evaluate long‐term basin response to erosion control treatments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The wide range of studies describing the role of bank erosion in fluvial sediment supply have mostly lumped amounts of bank erosion into coarse temporal units, such as years. This paper investigates sediment yields from individual bank erosion events within the upper River Severn, UK (basin area 380 km2). Manual erosion pins and photo-electronic erosion pins were used to estimate bank erosion, and turbidity meters were used to determine suspended sediment transport. At the annual time-scale, the silt-clay fraction of bank-derived sediment accounted for an equivalent of 17 per cent of the suspended load, increasing to an average of 38 per cent at the monthly timescale, and then to an average of 64 per cent at the event timescale. This research highlighted that for an upland catchment, bank erosion was an important supply of suspended sediment, and that for some flood events bank erosion can supply more sediment than is transported. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in the study area of the Loess Plateau. For different regions, scale relationship in log-log ordinate can be fitted by two types of lines: straight and parabola, and for each line, a function was fitted using regression analysis. The different scale relationships have been explained in terms of the difference in surface material distribution and landforms. To offset the scale-induced influence, calcu-lation has been done based on the fitted functions, in order to adjust the data of specific sediment yield to a common standard area. Based on the scaled data, a map of specific sediment yield was con-structed using Kriging interpolation. For comparison, a map based on the un-scaled data of specific sediment yield was also constructed using the same method. The two maps show that the basic pattern of specific sediment yield was basically the same. The severely eroded areas (Ys >10000 t km-2a-1) were at the same locations from Hekouzhen to Longmen in the middle Yellow River Basin. However, after the adjustment to a common standard area, the very severely eroded area (Ys >20000 t km-2a-1) became much enlarged because after the adjustment, all the values of Ys in the lower river basin in those regions became much larger than before.  相似文献   

19.
The variability of hillslope form and function is examined experimentally using a simple model catchment in which most landscape development parameters are either known or controlled. It is demonstrated that there is considerable variability in sediment output from similar catchments, subjected to the same hydrological processes, and for which the initial hillslope profiles are the same. The results demonstrate that, in the case of catchments with a linear initial hillslope profile, the sediment output is initially high but reduces through time, whereas for a concave initial profile the sediment output was smaller and relatively constant. Concave hillslope profiles also displayed reduced sediment output when compared with linear slopes with the same overall slope. Using this experimental model catchment data, the SIBERIA landscape evolution model was tested for its ability to predict temporal sediment transport. When calibrated for the rainfall and erodible material, SIBERIA is able to simulate mean temporal sediment output for the experimental catchment over a range of hillslope profiles and rainfall intensities. SIBERIA is also able to match the hillslope profile of the experimental catchments. The results of the study provide confidence in the ability of SIBERIA to predict temporal sediment output. The experimental and modelling data also demonstrate that, even with all geomorphic and hydrological variables being known and/or controlled, there is still a need for long‐term stream gauging to obtain reliable assessments of field catchment hydrology and sediment transport. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Proglacial slopes provide suitable conditions for observing the co-development of abiotic and biotic systems. The frequency and magnitude of geomorphic processes and plant composition govern this interplay, which is described in the model of biogeomorphic succession. In high mountain environments, this model has only been tested in a limited number of studies. The study aimed to quantify small-scale sediment transport via erosion plots along a plant cover gradient and to investigate the influence of sediment transport on plant communities. We aimed to generate quantitative data to test existing biogeomorphic models. Small-scale biogeomorphic interactions were investigated on 30 test plots of 2 × 3 m size on proglacial slopes of the Gepatschferner (Kaunertal) in the Austrian Alps during the snow-free summer months over three consecutive years. The experimental plots were established on slopes along a plant cover gradient. A detailed vegetation survey was carried out to capture biotic conditions, and specific sediment yield was measured at each plot. Species abundance and composition at each site reflected successional stages. Additional environmental parameters, such as terrain age, geomorphometry, grain size distribution, soil nutrients, and precipitation, were also included in the analyses. We observed two pronounced declines in geomorphic activity on plots with both above 30% and above 75% plant cover. Nonmetric multidimensional scaling showed distinct clusters of vegetation composition that mainly followed a successional gradient. Sites that were affected by high-magnitude geomorphic events showed different environmental conditions and species communities. Quantified process rates and observed species composition support the concept of biogeomorphic succession. The findings help to narrow down a biogeomorphic feedback window.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号