首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
South Korea separates two mantle source domains for Late Cenozoic intraplate volcanism in East Asia: depleted mid-ocean-ridge basalt (MORB) mantle-enriched mantle type 1 (DMM-EM1) in the north and DMM-EM2 in the south. We determined geochemical compositions, including Sr, Nd, Pb, and Hf isotopes for the Jeongok trachybasalts (∼0.51 to 0.15 Ma K–Ar ages) from northernmost South Korea, to better constrain the origin and distribution of the enriched mantle components. The Jeongok basalts exhibit light rare earth element (LREE)-enriched patterns ([La/Yb]N = 9.2–11.6). The (La/Yb)N ratios are lower than that of typical oceanic island basalt (OIB). On a primitive mantle-normalized incompatible element plot, the Jeongok samples show OIB-like enrichment in highly incompatible elements. However, they are depleted in moderately incompatible elements (e.g., La, Nd, Zr, Hf, etc.) compared with the OIB and exhibit positive anomalies in K and Pb. These anomalies are also prime characteristics of the Wudalianchi basalts, extreme EM1 end-member volcanics in northeast China. We have compared the geochemistry of the Jeongok basalts with those of available Late Cenozoic intraplate volcanic rocks from East Asia (from north to south, Wudalianchi, Mt. Baekdu and Baengnyeong for DMM-EM1, and Jeju for DMM-EM2). The mantle source for the Jeongok volcanics contains an EM1 component. The contribution of the EM1 component to East Asian volcanism increases toward the north, from Baengnyeong through Jeongok to Mt. Baekdu and finally to Wudalianchi. Modeling of trace element data suggests that the Jeongok basalts may have been generated by mixing of a Wudalianchi-like melt (EM1 end-member) and a melt that originated from a depleted mantle source, with some addition of the lithospheric mantle beneath the Jeongok area. In Nd–Hf isotope space, the most enriched EM1-component-bearing Jeongok sample shows elevation of 176Hf/177Hf at a given 143Nd/144Nd compared with OIB. Recycled pelagic sediments may explain the EM1-end-member component of northeastern Asian volcanism, possibly from the mantle transition zone.  相似文献   

2.
华北龙岗第四纪玄武岩:岩石成因和源区性质   总被引:1,自引:1,他引:1  
华北克拉通东北缘龙岗第四纪玄武岩的地球化学研究为大陆碱性玄武岩的成因以及源区的性质提供了重要的依据.龙岗第四纪玄武岩为碱性玄武岩,具有类似OIB的REE和微量元素分配特征.岩石的Sr-Nd同位素轻度亏损(87Sr/86Sr =0.7044~0.7048,εNd=0.6~2.1),具有Dupal异常的高放射性成因Pb同位素组成(^206 Pb/^204 Pb=17.734~18.194,^207 Pb/^204 Pb=15.553~15.594,^208 Pb/%204 Pb=38.322~38.707).这种地球化学特征指示了原始岩浆起源于<70km深度的地幔,并经历了一定程度的橄榄岩、单斜辉石和钛.铁氧化物的结晶分异.岩浆源区中以来类似MORB软流圈物质的熔体为主,另外有少量来自EM Ⅰ性质的富集岩石圈地幔以及俯冲流体/熔体的物质贡献,显示了深部岩石圈-软流圈一定程度的相互作用以及太平洋板块俯冲的影响.岩浆源区多种端元组分的存在表明该地区岩石圈的减薄/置换受到多种因素的影响.  相似文献   

3.
To constrain the provenance of the Ordos Basin and the evolution history of the Qinling Orogen Belt from the Triassic to the Jurassic, 10 samples from the Dongsheng area and 28 samples from the Yan’an area were analyzed for U–Pb ages and Lu–Hf and Sm–Nd isotopic compositions. The results indicate that Middle Jurassic sediments in the Dongsheng area were derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane. Mesozoic sediments in the Yan’an area consist of two parts. One part is derived from the North China Craton (NCC), which has U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga, and Hf model ages of ∼2.8 Ga. The other part is derived from the Qilian–Qinling Orogenic Belt, which has U–Pb age groups of 600–1500 Ma and 100–500 Ma, and Nd and Hf isotopic model ages of less than 2.2 Ga. Combining the U–Pb ages with the Hf and Nd isotopic model ages, Mesozoic detrital zircons with U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga in the Yan’an area are found to also be derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane, not from the Trans-China Orogen Belt. From the late–Late Triassic sediments of the Yan’an area, the low average values of the Hf (2.03 Ga) and Nd (2.03 Ga) model ages and the characteristic age population of 600–1500 Ma reveal that the main collision or continental subduction between the NCC and the South China Craton (SCC) occurred in the late–Late Triassic. After the main collision or continental subduction, the proportion of sediments from the Qinling–Qilian Orogenic Belt began to decrease (recorded in the early Jurassic samples), which may be in response to the gradual slowing of the uplift speed of the Qinling Orogenic Belt. In the early-middle Jurassic, the sediments have a main U–Pb age population of 100–500 Ma, low detrital zircon Hf model ages (average value is 1.17 Ga) and low whole rock Nd model ages (average value is 1.13 Ga), which suggests that the Qilian–Qinling Orogenic Belt may have a fast uplift history in the early-middle Jurassic.  相似文献   

4.
《International Geology Review》2012,54(16):1885-1905
Late Mesozoic granitoid plutons of four distinct ages intrude the lower plate of the Hohhot metamorphic core complex along the northern margin of the North China craton. The plutons belong to two main groups: (1) Group I, deformed granitoids (148 and 140 Ma subgroups) with high Sr, LREE, and Na2O, low Y and Yb contents, high Sr/Y and La/Yb ratios, weak or no Eu anomalies, low Rb/Ba ratios, similar initial 87Sr/86Sr values (0.7064–0.7071) and low Mg# (<37 mostly, 100?×?molar MgO/MgO + FeO t ); (2) Group II, non-deformed granitoids (132 and 114 Ma subgroups) with low Sr, relatively low Na2O, high Y and Yb contents, pronounced negative Eu anomalies, high Rb/Ba ratios, and initial 87Sr/86Sr values (0.7098–0.7161). The two groups share geochemical similarities in ?Nd(t) (–11.3 to –15.4) and T DM2 ages (1.85–2.18 thousand million years) as well as Hf isotopic ratios in zircons. Geochemical modelling (using the MELTS code) suggests that similar sources but different depths of magma generation produced the early, high-pressure low-Mg adakitic granitoids and late, low-pressure granitoids with A-type characteristics. The early granitoids likely represent a partially melted, deep-seated, thickened lower continental crust that involved a minor contribution from young materials, whereas the later group partially melted at shallower depths. This granitic magmatic evolution coincided with the tectonic transition from crustal contraction to extension.  相似文献   

5.
Major- and trace-element and Sr–Nd–Hf isotopic compositionsof garnet and clinopyroxene in kimberlite-borne eclogite andpyroxenite xenoliths were used to establish their origins andevolution in the subcontinental lithospheric mantle beneaththe central Slave Craton, Canada. The majority of eclogitescan be assigned to three groups (high-Mg, high-Ca or low-Mgeclogites) that have distinct trace-element patterns. Althoughpost-formation metasomatism involving high field strength element(HFSE) and light rare earth element (LREE) addition has partiallyobscured the primary compositional features of the high-Mg andhigh-Ca eclogites, trace-element features, such as unfractionatedmiddle REE (MREE) to heavy REE (HREE) patterns suggestive ofgarnet-free residues and low Zr/Sm consistent with plagioclaseaccumulation, could indicate a subduction origin from a broadlygabbroic protolith. In this scenario, the low REE and smallpositive Eu anomalies of the high-Mg eclogites suggest moreprimitive, plagioclase-rich protoliths, whereas the high-Caeclogites are proposed to have more evolved protoliths withhigher (normative) clinopyroxene/plagioclase ratios plus trappedmelt, consistent with their lower Mg-numbers, higher REE andabsence of Eu anomalies. In contrast, the subchondritic Zr/Hfand positive slope in the HREE of the low-Mg eclogites are similarto Archaean second-stage melts and point to a previously depletedsource for their precursors. Low ratios of fluid-mobile to lessfluid-mobile elements and of LREE to HREE are consistent withdehydration and partial melt loss for some eclogites. The trace-elementcharacteristics of the different eclogite types translate intolower Nd for high-Mg eclogites than for low-Mg eclogites. Withinthe low-Mg group, samples that show evidence for metasomaticenrichment in LREE and HFSE have lower Nd and Hf than a samplethat was apparently not enriched, pointing to long-term evolutionat their respective parent–daughter ratios. Garnet andclinopyroxene in pyroxenites show different major-element relationshipsfrom those in eclogites, such as an opposite CaO–Na2Otrend and the presence of a CaO–Cr2O3 trend, independentof whether or not opx is part of the assemblage. Therefore,these two rock types are probably not related by fractionationprocesses. The presence of opx in about half of the samplesprecludes direct crystallization from eclogite-derived melts.They probably formed from hybridized melts that reacted withthe peridotitic mantle. KEY WORDS: eclogites; pyroxenite xenoliths; mantle xenoliths; eclogite trace elements; eclogite Sr isotopes; eclogite Hf isotopes; eclogite Nd isotopes  相似文献   

6.
华北克拉通北部古-中元古代富碱侵入岩主要分布在燕辽三叉裂堑系和辽吉拗拉谷中及附近,为一套高碱高钾的基性-中性岩,以正长岩类为主。本文通过开展系统的 Nd、Sr、Pb 同位素研究,发现所有岩体岩石均以高负ε_(Nd)(t)为特征,ε_(Nd)(t)=-3.4~-7.5,平均值为~4.8,这与研究区古-中元古代基性-超基性岩石的 Nd 同位素特征(ε_(Nd)(t)=-4~-8) 一致,与燕辽裂堑系发育的偏碱性火山岩 Nd 同位素特征(ε_(Nd)(t)=-4.3~-8.9)也比较相似,表明它们的物质来源相似,都与富集地幔有关。Sr 同位素初始比值(~(87)St/~(86)Sr)_i比较低,主要变化在0.7028~0.7053之间,平均值为0.7041。钾长石铅同位素组成普遍较低,~(206)Pb/~(204)Pb、~(207)pb/~(204)Pb、~(208)Pb/~(204)Pb 比值变化范围(梁屯-矿洞沟岩体除外)分别为14.500~15.70l、14.887~15.150和34.178~36.537,平均值分别为14.968、14.984和35.057。在ε_(Nd)(t)-ε_(Sr)(t)图解上,所有岩体的投影点均在地幔演化趋势线附近,比较接近 EMI 型富集地幔端员,暗示它们的物质来源与 EMI 型富集地幔有关;钾长石 Pb 同位素模式图也说明这些岩体物质来源与地幔和下地壳有关。通过两端员混合模拟,揭示了岩浆演化过程中存在少量的下地壳物质混染,平均约14%左右。从2.5Ga 左右开始华北克拉通岩石圈地幔的亏损程度逐渐变小,在2.2Ga 左右局部呈现富集性特征,1.85Ga时整个岩石圈地幔已经完全转变为富集性,之后富集程度越来越高。推测早期俯冲携带的壳源物质以及后期地幔流体的交代作用可能是岩石圈地幔逐渐转变为富集性的原因。  相似文献   

7.
钱青  孙晓猛 《岩石学报》2001,17(3):385-394
北祁连九个泉蛇绿岩中的玄武岩的MORB,根据其地质产状和地球化学特征又可以分为两部分,剖面下部的玄武岩为N-MORB,上部的玄武岩主要为E-MORB。玄武岩多数具有Nb负异常,从下向上,九个朱武岩的Th,Nb,LREE,Zr等含量及(La/Yb)N,(La/Sm)N,Ce/Zr,Zr/Y,Th/.La,Th/Yb比值逐渐增加,并伴随着Y,Yb,Lu,Sc含量,Zr/Nb和La/Nb比值以及εEd(t)的逐渐减小,不相容元素比值及εNd(t)之间具有很好的相关性,上述特征反映不均一地幔部分熔融过程中N-MORB源区和富集地幔之间的混合作用,微量元素和Nd同位素地球化学特征表明九个泉蛇绿岩形成于弧后盆地中的海山环境,玄武岩的化学成分在垂向上的变化记录了海山生长并逐渐远离扩张脊的动态的地质过程,海山可能是形成蛇绿岩的一种重要环境。  相似文献   

8.
ABSTRACT

The Beihuaiyang Zone (BHY) is one of the most important Mo–Pb–Zn polymetallic metallogenic belts in China, and the BHY deposits are genetically and geographically associated with Cretaceous magmatic rocks. In this article, we present new zircon U–Pb ages and Hf isotope data, whole-rock major and trace-element analytical results, and Sr–Nd–Pb isotope data for the granite porphyry of the Shapinggou (SPG) Mo deposit and the quartz monzonite porphyry of the Gongdongchong (GDC) Pb–Zn deposit. The high contents of SiO2, crust-like rare-earth-element and trace element patterns, and the enriched Sr–Nd–Pb–Hf isotopic compositions indicate that both porphyries originated from crustal melting. Inherited Neoproterozoic zircons are common in both porphyries, which implies that their crustal sources were the South China Block rather than the North China Block. Whole-rock εNd(t) values (?10.8 to ?9.8 for the GDC deposit, ?12.9 to ?12.4 for the SPG deposit) and zircon εHf(t) values (?14.3 to ?11.1 for the GDC deposit, ?18.4 to ?13.3 for the SPG deposit) for the ore-bearing rocks are significantly higher than the values found in the widespread and older ore-barren rocks, indicating that the magma sources of the ore-bearing rocks were younger than those of the ore-barren rocks. An integrated study of the Sr–Nd–Pb–Hf isotope contents shows that these younger source rocks are similar to the gneisses found in the South and Central Dabie units, which represent the upper crust of the subducted South China Block. Given the geochemical behaviour of molybdenum, a surface enrichment process would have been an essential prerequisite for the formation of the large Mo deposit. The early Paleozoic Mo–Pb–Zn-enriched black shales, which are widespread in the upper layers of the South China Block, might have been scraped off during Triassic subduction and then transported to deep-crustal levels below the BHY, thus forming an ideal source for the ore-bearing porphyries. An upper-crustal origin for the ore-bearing magmatic rocks is also consistent with the data for most other deposits distributed in the BHY of the Dabie Orogen.  相似文献   

9.
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.  相似文献   

10.
The Xincheng deposit is the only large gold deposit with a proven reserve of >200 t gold hosted by the Early Cretaceous granitoids in northwest Jiaodong Peninsula, East China. The granitoids hosting this ore deposit comprise an inner medium- to fine-grained quartz monzonite and an outer medium- to coarse-grained monzogranite with distinctive K-feldspar megacrysts. LA–ICP–MS zircon dating yields U–Pb ages of 128 ± 1 to 132 ± 1 Ma and 127 ± 2 to 129 ± 1 Ma, for the quartz monzonite and the monzogranite, respectively. The Early Cretaceous ages obtained in our study are comparable with the 126–130 Ma age range reported for the Guojialing granitic suite. The monzogranites, typical high Ba–Sr granites, possess high SiO2 (70.89–73.35%), K2O (3.85–4.32%), total alkalis (K2O + Na2O = 8.08–8.68%), Sr (634–888 ppm), Ba (1395–2111 ppm) and LREE (59.43–145.88), with low HREE and HFSE contents and insignificant Eu anomalies. The rocks display markedly high Sr/Y (114–297) and (La/Yb)N (20–79) ratios. They have low MgO (0.23–0.62%), Cr (0.4–8.33 ppm) and Ni (0.47–2.92 ppm) contents. The typical high Ba–Sr signatures of the outer acidic monzogranites are also shared by the inner intermediate-acidic quartz monzonites, with a relatively higher abundance of these elements. The plagioclases in the quartz monzonites and monzogranites are oligoclase–andesine with An contents of 11.7–44.5%, and oligoclase with An contents of 12.9–29.3%, respectively, which both show the reverse zoning texture. The quartz monzonites have zircon εHf(t) values of −21.3 to −13.9 (average −18.7), which are less negative and show larger variations than those of the monzogranites (εHf(t) = −24.7 to −18.1, average −19.5). Detailed elemental, mineralogical and isotopic data suggest that the high Ba–Sr quartz monzonites and monzogranites were most likely generated by partial melting of the basement rocks of the Jiaobei terrane accompanied by crustal assimilation, with minor addition of the intermediate magma derived from the partial melting of juvenile mafic lower crust formed by the earlier underplating of mantle magma, and the quartz monzonites may represent the path of intermediate magma inputting into felsic magma. In combination with previous investigations, we suggest subduction of the paleo-Pacific slab beneath the North China Craton (NCC) and associated asthenosphere upwelling were most likely the mechanism associated with the generation of the high Ba–Sr granites.  相似文献   

11.
The Baer ophiolitic massif is located in the northern sub-belt of the western segment of the Yarlung Zangbo Suture Zone (YZSZ) and mainly consists of a lherzolite-dominant mantle suite, dolerite intrusions and limited crustal outcrops. The dolerites show sub-ophitic texture and light rare earth element-depleted chondrite-normalized rare earth element patterns similar to normal-mid-ocean ridge basalts (N-MORB); though, they display enrichments in fluid-mobile elements (Rb, Ba, and Sr) and marked depletions in Th and Nb. The U–Pb ages of several magmatic zircon grains recovered from two dolerite samples indicate that the intrusion of the dikes into the Baer lherzolitic mantle occurred at 125.6–126.3 Ma, consistent with the widespread mafic magmatism between 120 and 130 Ma in the Yarlung Zangbo ophiolites. The dolerites have slightly more radiogenic 87Sr/86Sr ratios (0.7043–0.7054) in comparison to N-MORB, whereas they show 143Nd/144Nd values (0.513067–0.513114) similar to N-MORB and high zircon Hf-isotope compositions. They have a limited range of Nd-isotope (εNd(t) values: +8.2 to +9.1) and juvenile Hf-isotope compositions (εHf(t) values: +8.4 to +14.2 and +10.0 to +15.1) indicating derivation from mantle melts. The moderate spread in the εHf (t) values of zircons indicates derivation of the dolerites parental magma from a weakly contaminated spinel-bearing mantle source. This is also corroborated by the geochemical signatures of the Baer dolerites (enrichment in LILE and depletion in HFSE) suggesting minor slab input to the mantle source of the dike-filling melt. We suggest that the genesis of the dolerite dike-forming melt happened at a stage of subduction initiation in a sub-oceanic mantle domain mildly affected by fluids emanating from the downgoing slab. Our data combined with literature data allow us to presume that the intrusion of the dolerites into the Baer mantle corresponds to an early phase of subduction initiation beneath a developing forearc basin.  相似文献   

12.
ABSTRACT

The West Junggar region, located in the Central Asian Orogenic Belt (CAOB), is characterized by extensive Carboniferous magmatism and porphyry Cu (-Au) deposits. The Shiwu porphyry Cu-Au deposit, located in the east of the Barluk Mountains, the West Junggar region, is not only a newly discovered deposit but also a representative porphyry Cu-Au deposit in this area. The volcanic rocks (including andesite and tuff) and intrusive rocks (including diorite, quartz diorite, quartz diorite porphyry, and tonalite porphyry) occurred in the Shiwu area and the mineralization associated with the quartz diorite porphyry. The secondary ion mass spectrometry (SIMS) zircon U–Pb ages of quartz diorite porphyry and tonalite porphyry are 310.4 ± 2.3 Ma and 310.1 ± 2.4 Ma, respectively, indicating that the Shiwu deposit is related to the Late Carboniferous magmatism. Intrusive rocks, which were characterized by the enrichment of large ion lithophile elements (LILEs) and pronounced negative high field strength elements (HFSEs), belong to the calc-alkaline or tholeiitic series. Their (87Sr/86Sr)i, (143Nd/144Nd)I, and εNd(t) values range from 0.703569 to 0.704311, 0.512488 to 0.512512, and 4.9 to 5.3, respectively. Volcanic rocks, which belong to the calc-alkaline series, have similar geochemical features as the intrusive rocks, and their (87Sr/86Sr)i, (143Nd/144Nd)i, and εNd(t) values, respectively, are 0.703704–0.704071, 0.512520–0.512542, and 5.49–5.92. These characters indicate that the igneous rocks in the Shiwu area derived dominantly from the mantle and formed in an island arc setting. These characters also further confirmed that the Barluk Mountains is still in an island arc setting in the Late Carboniferous and the accretionary orogenesis can exist until 310 Ma at least.  相似文献   

13.
The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, extending more than 5000 km north to south, on both sides of the Atlantic Ocean. Its emplacement occurred about 200 Ma ago, at the Triassic–Jurassic boundary, and is linked to the initial breakup of Pangaea. Two areas of the province are studied here: French Guyana/Surinam (South America) and Guinea (West Africa), in order to document the petrogenesis and geodynamical significance of high-Ti and low-Ti basaltic magmas from the CAMP.

In Guyana, doleritic and gabbroic dykes are located on the edge of the Guiana Shield, and represent limited volumes of magma. They display low SiO2 (47–50%), high TiO2 (2.5–3.5%) and high FeO tholeiitic trends and show variably enriched trace element patterns ((La/Yb)n=1.5–5.1). Their isotopic signature and ratios of very incompatible elements (εNdi=+5.8 to +4.2, (87Sr/86Sr)i=0.703–0.705, (207Pb/204Pb)i=15.46–15.64) match a depleted PREMA (prevalent mantle)-like source. Their genesis can be modeled by ca. 15% partial melting of a lherzolite source, and a subsequent limited fractional crystallization (5–10%) or a slight upper crustal assimilation–fractional crystallization (AFC, r=0.1, Proterozoic contaminant). In Guinea, in contrast, huge volumes of CAMP magmas were intruded along the Rockelides suture and the West African craton, forming the Fouta Djalon sills and the Kakoulima laccolith. The laccolith is more than 1000 m thick. These features consist of gabbros, dolerites, diorites and mafic (gabbro) and ultramafic (dunite, wherlite) cumulates. Guinean tholeiites show high SiO2 (51–58%), low TiO2 (0.7–1.2%) and FeO trends, with high LILE/HFSE ratios and slight negative Nb–Ta anomalies. Isotopic signatures (εNdi=+0.4 to −5.3, (87Sr/86Sr)i=0.705–0.710, (207Pb/204Pb)i=15.57–15.66) indicate a more enriched source than for Guyana as well as a higher rate of magma–upper crust interaction through an AFC process (r=0.3, Birimian crust contaminant) and, probably, an additional upper crustal contamination for the most differentiated sample.

This geochemical study supports the prevalence in Guinea, as for other low-Ti CAMP tholeiites, of a lithospheric mantle source, previously enriched during ancient subduction events, and preferentially reactivated in late Triassic times by edge-driven convection between cratonic and mobile belt domains. A larger contribution from a depleted asthenospheric source is required to generate high-Ti tholeiites in Guyana, which may reflect the development of CAMP rifting towards the initiation of the Central Atlantic oceanic crust.  相似文献   


14.
《International Geology Review》2012,54(13):1668-1690
The western Junggar Basin is located on the southeastern margin of the West Junggar terrane, Northwest China. Its sedimentary fill, magma petrogenesis, tectonic setting, and formation ages are important for understanding the Carboniferous tectonic evolution and continental growth of the Junggar terrane and the Central Asian Orogenic Belt. This paper documents a set of new zircon secondary ion mass spectrometry U–Pb geochronological and Hf isotopic data and whole-rock elemental and Sr–Nd isotopic analytical results for the Carboniferous strata and associated intrusions obtained from boreholes in the western Junggar Basin. The Carboniferous strata comprise basaltic andesite, andesite, and dacite with minor pyroclastic rocks, intruded by granitic intrusions with zircon secondary ion mass spectrometry U–Pb ages of 327–324 Ma. The volcanic rocks are calc-alkaline and show low high εNd(t) values (5.3–5.6) and initial 87Sr/86Sr (0.703561–0.703931), strong enrichment in LREEs, and some LILEs and depletion in Nb, Ta, and Ti. Furthermore, they also display high (La/Sm)N (1.36–1.63), Zr/Nb, and La/Yb, variable Ba/La and Ba/Th and constant Th/Yb ratios. These geochemical data, together with low Sm/Yb (1.18–1.38) and La/Sm (2.11–2.53) ratios, suggest that these volcanic rocks were derived from a 5–8% partial melting of a mainly spinel Iherzolite-depleted mantle metasomatized by slab-derived fluids and melts of some sediments in an island-arc setting. In contrast, the granitic intrusions represent typical adakite geochemical features of high Sr and low Y and Yb contents, with no significant Eu anomalies, high Mg#, and depleted εNd(t) (5.6–6.4) and εHf(t) (13.7–16.2) isotopic compositions, suggesting their derivation from partial melting of hot subducted oceanic crust. In combination with the previous work, the West Junggar terrane and adjacent western Junggar Basin are interpreted as a Mariana-type arc system driven by northwestward subduction of the Junggar Ocean, possibly with a tectonic transition from normal to ridge subduction commencing ca. at 331–327 Ma.  相似文献   

15.
Porphyry Cu deposits occurred in the southern West Junggar of Xinjiang, NW China and are represented by the Baogutu and newly-discovered Jiamantieliek porphyry Cu deposits. Petrographical and geochemical studies show that both Jiamantieliek and Baogutu ore-bearing intrusions comprise main-stage diorite stock and minor late-stage diorite porphyry dikes and are the calc-alkaline intermediate intrusions. Based on U–Pb zircon SHRIMP analyses, the Jiamantieliek intrusion formed in 313 ± 4 Ma and 310 ± 5 Ma, while, based on U–Pb zircon SIMS analyses, the Baogutu intrusion formed in 313 ± 2 Ma and 312 ± 2 Ma. Rocks in the Jiamantieliek intrusion are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE) with negative Nb anomaly. Their isotopic compositions (εNd(t) = +1.6 to +3.4, (87Sr/86Sr)i = 0.70369–0.70401, (207Pb/204Pb)i = 15.31–5.41) suggest a mixing origin from depleted to enriched mantle sources. In the Baogutu intrusion, the rocks are similar to those of the Jiamantieliek intrusion. Their Sr-Nd-Pb isotopic composition (εNd(t) = +4.4 to +6.0, (87Sr/86Sr)i = 0.70368–0.70385, (207Pb/204Pb)i = 15.34–5.42) shows a more depleted mantle source. These features suggest generation in an island arc. The Jiamantieliek and Baogutu intrusions have similar characteristics, indicating that a relatively uniform and integrated source region has existed in the southern West Junggar since the Palaeozoic. A larger contribution of calc-alkaline magma would be required to generate the Jiamantieliek intrusion, which may reflect the development of magma arc maturation towards the western section of the southern West Junggar.  相似文献   

16.
17.
The Sergipano belt is the outcome of collision between the Pernambuco-Alagoas Domain (Massif) and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Although the understanding of the Sergipano belt evolution has improved significantly, the timing of emplacement, geochemistry and tectonic setting of granitic bodies in the belt is poorly known. We recognized two granite age groups: 630–618 Ma granites in the Canindé, Poço Redondo and Macururé domains, and 590–570 Ma granites in the Macururé metasedimentary domain. U–Pb SHRIMP zircon ages for granites of first age group indicated ages of 631 ± 4 Ma for the Sítios Novos granite, 623 ± 7 Ma for the Poço Redondo granite, 619 ± 3.3 Ma for the Lajedinho monzodiorite, and 618 ± 3 Ma for the Queimada Grande granodiorite. These granitoids are dominantly high-K calc-alkaline, magnesian, metaluminous, mafic enclave-rich (Queimada Grande and Lajedinho), or with abundant inherited zircon grains (Poço Redondo and Sitios Novos). Geochemical and isotope data allow us to propose that Sítios Novos and Poço Redondo granites are product of partial melting of Poço Redondo migmatites. Sr-Nd isotopes of the Queimada Grande granodiorite and Lajedinho monzodiorite suggest that their parental magma may have originated by mixing between a juvenile mafic source and a crustal component that could be the Poço Redondo migmatites or the Macururé metasediments. Other 630–618 Ma granites in the belt are the mafic enclave-rich Coronel João Sá granodiorite and the Camará tonalite in the Macururé sedimentary domain. These granites have similar geochemical and isotopic characteristics as the Lajedinho and Queimada Grande granitoids. We infer for the Camará tonalite and Coronel João Sá granodiorite that their parental magmas have had contributions from mafic lower crust and felsic upper crust, most probably from underthrust São Francisco Craton, or Pernambuco-Alagoas Domain. The younger 590–570 Ma granite group is confined to the Macururé metasedimentary domain. Although these granites do not show typical features of S-type granites, their U–Pb age, field relationships, geochemical and Sr-Nd data suggest that their parental magmas have originated from high degree melting of the Macururé micaschists. Field observations support a model in which the Macururé domain, limited by the Belo Monte-Jeremoabo and São Miguel do Aleixo shear zones, behaved as a ductile channel flow for magma migration and emplacement during the Neoproterozoic, very much like the channel flow model proposed for emplacement of leucogranites in the Himalayas.  相似文献   

18.

近年来,得益于同位素分析技术和质谱仪器性能的提高,使得铁(Fe)、镁(Mg)和钙(Ca)等非传统稳定同位素的高精度测量成为可能,并很快在地球化学、天体化学和生物地球化学等研究领域取得了丰硕的成果。本文通过对比分析来自华北克拉通不同地区不同类型地幔捕虏体的Fe、Mg和Ca位素组成特征,揭示华北克拉通岩石圈地幔Fe、Mg和Ca同位素组成不均一性的成因,并在此基础上,探讨华北大陆岩石圈地幔演化过程如部分熔融、橄榄岩-熔体反应过程、熔体的性质和来源等科学问题,为华北克拉通岩石圈的演化过程提供新证据。

  相似文献   

19.
张家口水泉沟正长岩杂岩体成因的REE和Sr、Nd、Pb同位素证据   总被引:13,自引:0,他引:13  
水泉沟杂岩体位于尚义 赤城断裂的南侧,侵位于太古宙桑干群变质岩中。岩体形成于晚加里东至早海两期。其稀土元素含量为8.543×10~(-6)~211.6×10~(-6),随着岩石的CaO、MgO、FeO、Fe_2O_3含量降低,SiO_2、K_2O、Na_2O含量增大,稀土含量减小,稀土分布模式由右倾直线型变为近平直的“~”型。在铅同位素构造模式图上杂岩体落在地幔铅同位素演化线附近。在ε_(Nd)-ε-(Sr)图解上处于地幔演化线的下方。杂岩体的钕模式年龄低于围岩桑干群的形成年龄。岩体可能来源干上地幔与下地壳太古宙变质杂岩混熔作用所形成的正长岩岩浆。  相似文献   

20.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号