首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对青藏高原西北部班公湖缝合带开展了野外地质调查,初步查明区内缝合带至少包含日土和狮泉河-改则两条蛇绿岩带。在两条蛇绿岩带北侧发现各有两期岛弧型岩浆岩发育,且形成时间严格对应。岩石地球化学分析表明,班公湖缝合带岛弧型岩浆岩的共同特征是富集大离子不相容元素Rb、Th、K和Pb;强烈亏损高场强元素Nb、Ta和Ti;Ba在微量元素蛛网图中总是相对亏损,这些特征说明班公湖地区存在两条俯冲带。从演化序列看,俯冲初期岩石属中钾钙碱性系列,之后岛弧岩浆作用向高钾钙碱性系列演变。锆石U—PbLA—ICPMS定年结果表明,北面的日土俯冲带洋壳俯冲从辉长岩墙开始,时代为(165.5±1.9)Ma(MSWD=1.16),在159Ma时岛弧岩浆作用规模增大,形成小型的花岗岩基;南面的狮泉河-改则俯冲带一开始俯冲((166.4±2.0)Ma,MSWD=3.0)就有较大规模的石英闪长岩体侵入,之后岩浆作用减弱,到159.4Ma时只有一些小体积的花岗斑岩和闪长玢岩侵入。根据岛弧岩浆作用规模,认为班公湖中特提斯洋盆的俯冲一开始是以狮泉河俯冲带为主,之后狮泉河俯冲带的俯冲作用逐渐减弱。到晚侏罗世初(159Ma)北面的日土俯冲带成为洋壳俯冲的主体。鉴于两条岛弧火成岩带在空间配置上都位于由基性-超基性岩构成的蛇绿岩带北侧,地球化学上显示陆缘弧特征,因此,认为班公湖中特提斯洋盆应该是在中侏罗世晚期(约166Ma)沿日土和狮泉河两条俯冲带同时向北俯冲,构造属性上可能不是一个统一的大洋,而是包含了多个局限性洋盆。  相似文献   

2.
The Haji‐Abad ophiolite in SW Iran (Outer Zagros Ophiolite Belt) is a remnant of the Late Cretaceous supra‐subduction zone ophiolites along the Bitlis–Zagros suture zone of southern Tethys. These ophiolites are coeval in age with the Late Cretaceous peri‐Arabian ophiolite belt including the Troodos (Cyprus), Kizildag (Turkey), Baer‐Bassit (Syria) and Semail (Oman) in the eastern Mediterranean region, as well as other Late Cretaceous Zagros ophiolites. Mantle tectonites constitute the main lithology of the Haji‐Abad ophiolite and are mostly lherzolites, depleted harzburgite with widespread residual and foliated/discordant dunite lenses. Podiform chromitites are common and are typically enveloped by thin dunitic haloes. Harzburgitic spinels are geochemically characterized by low and/or high Cr number, showing tendency to plot both in depleted abyssal and fore‐arc peridotites fields. Lherzolites are less refractory with slightly higher bulk REE contents and characterized by 7–12% partial melting of a spinel lherzolitic source whereas depleted harzburgites have very low abundances of REE and represented by more than 17% partial melting. The Haji‐Abad ophiolite crustal sequences are characterized by ultramafic cumulates and volcanic rocks. The volcanic rocks comprise pillow lavas and massive lava flows with basaltic to more‐evolved dacitic composition. The geochemistry and petrology of the Haji‐Abad volcanic rocks show a magmatic progression from early‐erupted E‐MORB‐type pillow lavas to late‐stages boninitic lavas. The E‐MORB‐type lavas have LREE‐enriched patterns without (or with slight) depletion in Nb–Ta. Boninitic lavas are highly depleted in bulk REEs and are represented by strong LREE‐depleted patterns and Nb–Ta negative anomalies. Tonalitic and plagiogranitic intrusions of small size, with calc‐alkaline signature, are common in the ophiolite complex. The Late Cretaceous Tethyan ophiolites like those at the Troodos, eastern Mediterranean, Oman and Zagros show similar ages and geochemical signatures, suggesting widespread supra‐subduction zone magmatism in all Neotethyan ophiolites during the Late Cretaceous. The geochemical patterns of the Haji‐Abad ophiolites as well as those of other Late Cretaceous Tethyan ophiolites, reflect a fore‐arc tectonic setting for the generation of the magmatic rocks in the southern branch of Neotethys during the Late Cretaceous. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
笔者调查发现西藏班公湖-怒江缝合带西段狮泉河-改则-洞错蛇绿岩带北侧和拉果错蛇绿岩带南侧都有岛弧型花岗岩岩基产出。这些岩体岩性上以中粒花岗闪长岩为主,岩石化学上明显富集大离子不相容元素(LILE) Rb、Th、U、K、Pb,亏损高场强元素(HFSE)Nb、Ta、Ti,具有岛弧型岩浆岩的本质特征,指示着班公湖中特提斯洋盆存在双向俯冲。锆石U-Pb LAICPMS定年结果显示岩体在不同构造位置年龄并不一致,位于狮泉河-改则-洞错蛇绿岩带北侧的嘎拉勒和改则北两个岩体锆石206Pb/238U加权平均年龄分别为155.6±1.1Ma(MSWD=1.7)和142.15±0.35Ma(MSWD=2.9),位于拉果错蛇绿岩带南侧的扎布耶北岩体的锆石206Pb/238U加权平均年龄为134.07±0.77Ma(MSWD=1.8),表明班公湖中特提斯洋盆向北俯冲发生在晚侏罗世,而向南的俯冲发生在早白垩世,两者相差约8Ma。岛弧花岗岩浆都是由地幔楔部分熔融而成,岩浆源区经历过来自俯冲板片的沉积物熔体的交代。不同岩体的源区沉积物熔体的交代比例不同:扎布耶北岩体最多,大体在12%~16%之间;嘎拉勒岩体次之,在9%~13%之间;改则北岩体最少,为5%~10%。  相似文献   

4.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。  相似文献   

5.
《International Geology Review》2012,54(11):1395-1412
The Neyriz ophiolite along the northeast flank of the Zagros fold-thrust belt in southern Iran is an excellent example of a Late Cretaceous supra-subduction zone (SSZ)-related ophiolite on the north side of the Neotethys. The ophiolite comprises a mantle sequence including lherzolite, harzburgite, diabasic dikes, and cumulate to mylonitic gabbro lenses, and a crustal sequence comprising a sheeted dike complex and pillow lavas associated with pelagic limestone and radiolarite. Mantle harzburgites contain less CaO and Al2O3, are depleted in rare earth elements, and contain spinels that are more Cr-rich than lherzolites. Mineral compositions of peridotites are similar to those of both abyssal and SSZ- peridotites. Neyriz gabbroic rocks show boninitic (SSZ-related) affinities, while crustal rocks are similar to early arc tholeiites. Mineral compositions of gabbroic rocks resemble those of SSZ-related cumulates such as high forsterite olivine, anorthite-rich plagioclase, and high-Mg# clinopyroxene. Initial εNd(t) values range from +7.9 to +9.3 for the Neyriz magmatic rocks. Samples with radiogenic Nd overlap with least radiogenic mid-ocean ridge basalts and with Semail and other Late Cretaceous Tethyan ophiolitic rocks. Initial 87Sr/86Sr ranges from 0.7033 to 0.7044, suggesting modification due to seafloor alteration. Most Neyriz magmatic rocks are characterized by less radiogenic 207Pb/204Pb (near the northern hemisphere reference line), suggesting less involvement of sediments in their mantle source. Our results for Neyriz ophiolite and the similarity to other Iranian Zagros ophiolites support a subduction initiation setting for its generation.  相似文献   

6.
Geochronological, geochemical, and structural studies of magmatic and metamorphic complexes within the Kyrgyz North Tianshan (NTS) revealed an extensive area of early Palaeozoic magmatism with an age range of 540–475 Ma. During the first episode at 540–510 Ma, magmatism likely occurred in an intraplate setting within the NTS microcontinent and in an oceanic arc setting within the Kyrgyz-Terskey zone in the south. During the second episode at 500–475 Ma, the entire NTS represented an arc system. These two phases of magmatism were separated by an episode of accretionary tectonics of uncertain nature, which led to obduction of ophiolites from the Kyrgyz-Terskey zone onto the microcontinent. The occurrence of zircon xenocrysts and predominantly negative whole-rock ɛNd(t) values and ɛHf(t) values of magmatic zircons suggest a continental setting and melting of Precambrian continental sources with minor contributions of Palaeozoic juvenile melts in the generation of the magmatic rocks. The late Cambrian to Early Ordovician 500–475 Ma arc evolved mainly on Mesoproterozoic continental crust in the north and partly on oceanic crust in the south. Arc magmatism was accompanied by spreading in a back-arc basin in the south, where supra-subduction ophiolitic gabbros yielded ages of 496 to 479 Ma. The relative position of the arc and active back-arc basin implies that the subduction zone was located north of the arc, dipping to the south. Variably intense metamorphism and deformation in the NTS reflect an Early Ordovician orogenic event at 480–475 Ma, resulting from closure of the Djalair-Naiman ophiolite trough and collision of the Djel'tau microcontinent with the northern margin of NTS. Comparison of geological patterns and episodes of arc magmatism in the NTS and Chinese Central Tianshan indicate that these crustal units constituted a single early Palaeozoic arc and were separated from the Tarim Craton by an oceanic basin since the Neoproterozoic.  相似文献   

7.
The Late Tertiary history of the Mediterranean region exemplifies processes of ocean basin closure and continental collision, as determined from integrated land and marine evidence. During the Mesozoic–Early Tertiary, tectonic settings were dominated by evolution of Neotethys. This ocean generally widened eastwards, with a number of oceanic strands in the Eastern Mediterranean area. Great diversity of tectonic settings and palaeo-environments developed during the Tertiary closure history of these oceanic basins. In the Eastern Mediterranean region, more northerly Neotethyan strands were closed by the Mid Tertiary, while oceanic crust remained in the south in the present Eastern Mediterranean Sea area. Northwards subduction of the remaining southerly Neotethyan strand was probably active by the Early Miocene. Different areas exhibit different stages of convergence and ocean basin closure. In the east, the amalgamated Eurasian plate had collided with the Arabian margin (Africa) by the Late Miocene, while oceanic crust still persisted further west. Steady-state subduction during the Late Tertiary gave rise to the Mediterranean ridge, as a substantial mud-dominated accretionary wedge. In the Aegean area, sufficient northward subduction took place to activate arc volcanism and pervasive back arc extension, short of marginal basin opening. In the easternmost Mediterranean, only limited subduction took place, associated with supra-subduction zone extension (e.g. in Cyprus). Today, steady state-subduction continues only locally, where vestiges of Neotethys remain (e.g. Herodotus abyssal plain). In the Western Mediterranean area, suturing of the African and Eurasian plates initially took place in the Betic region (Early–Mid Tertiary), where the Neotethys had existed only as a narrow connection with the Central North Atlantic. In the Central Mediterranean region, where the Western Neotethys was wider, northward subduction was active, apparently as early as the Late Cretaceous. In a widely accepted interpretation, an Andean-type magmatic arc developed along the southern margin of Europe and was then rifted off in the Late Oligocene-Early Miocene, to form the Corsica-Sardinia Block, opening the North Balearic marginal basin in its wake. The migrating subduction zone and microcontinent then collided diachronously with North Africa-related continental units (North Africa and Apulia) from Late Oligocene-Early Miocene, giving rise to collisional thrust belts in the Northern and Southern Apennines and along the North African continental margin (i.e. the Maghrebian chain) to the Betic-Rif area. From the Early Miocene onwards, a separate subduction system became active, related to removal of Neotethyan oceanic crust to the southeast (Ionian Sea), fueling suprasubduction zone extension and opening of the Tyrrhenian Sea. ‘Orogenic collapse’ is an alternative mechanism of such extension, and is widely believed to have caused divergent thrusting in the Betic and Rif regions of the westernmost Mediterranean, at the same time as crustal extension and subsidence of the Alboran Sea.  相似文献   

8.
Three independent single‐grain geochronometers applied to detrital minerals from Central Dinaride sediments constrain the timing of felsic magmatism that associated the Jurassic evolution of the Neotethys. The Lower Cretaceous clastic wedge of the Bosnian Flysch, sourced from the Dinaride ophiolitic thrust complex, yields magmatic monazite and zircon grains with dominant age components of 164 ± 3 and 152 ± 10 Ma respectively. A unique tephra horizon within the Adriatic Carbonate Platform was dated at 148 ± 11 Ma by apatite fission track analysis. These consistent results suggest that leucocractic melt generation in the Central Dinaride segment of the Neotethys culminated in Middle to Late Jurassic times, coeval with and slightly post‐dating subophiolitic sole metamorphism. Growth of magmatic monazite and explosive volcanism call for supra‐subduction‐zone processes at the convergent Neotethyan margin. New compilation of geochronological data demonstrates that such Jurassic felsic rocks are widespread in the entire Dinaride–Hellenide orogen.  相似文献   

9.
ABSTRACT

Recently identified Early Jurassic, Early Cretaceous, and Late Cretaceous granites of the Tengchong terrane, SW China, help to refine our understanding of the Mesozoic tectonic-magmatic evolutionary history of the region. We present new zircon U–Pb geochronological, Lu–Hf isotopic and geochemical data on these rocks. The zircon LA-ICP-MS U–Pb ages of the Mangzhangxiang, Laochangpo, and Guyong granites, and Guyong granodioritic microgranular enclaves are 185.6, 120.7, 72.9, and 72.7 Ma, respectively. Geochemical and Hf isotopic characteristics suggest the Mangzhangxiang and Laochangpo S-type granites were derived from partial melting of felsic crust and that the Guyong I-type granite and associated MMEs were generated through magma mixing/mingling. Mesozoic magmatism in the Tengchong terrane can be divided into three episodes: (1) the Triassic syn- and post-collisional magmatic event was related to the closure of the Palaeo-Tethyan Ocean, as represented by the Changning-Menglian suture zone; (2) the Jurassic to Early Cretaceous magmatism was related to the subduction of the Meso-Tethyan oceanic crust, as represented by the Myitkyina ophiolite belt; and (3) the Late Cretaceous magmatism was related to the subduction of the Neo-Tethyan oceanic crust, as represented by the Kalaymyo ophiolite belt.  相似文献   

10.
Bangong-Nujiang Suture Zone (BNSZ) in central Tibet plays an important role in evaluating the formation and uplift mechanism of Tibetan Plateau. However, its Mesozoic tectonic evolution is ambiguous and intensely debated. In this study, Early Cretacesous adakites and sodium-rich arc rocks are identified in Western Qiangtang (WQ) and Northern Lhasa (NL) sub-terranes. Forty-four adakite samples from both WQ and NL have akin geochemical features, and are derived from partial melting of subducted oceanic crust with amphibole residual. Nineteen sodium-rich samples originated from a mixed source region between crustal sediment and enriched lithospheric mantle. These two parallel arc belts separated by the Bangong-Nujiang Suture Zone (BNSZ) represent the divergent double subduction of the Bangong-Nujiang Tethyan Ocean (BNTO). Combined with the previous studies, our new data suggest three significant magmatic flare-ups at ∼240–140 Ma, 135–105 Ma and 92–60 Ma in the WQ and BNSZ, and two at 135–105 Ma and 92–60 Ma in the NL. These asymmetrical magmatic activities indicate that the southern subduction may have commenced at about 135 Ma and experienced slab breakoff at the latest Early Cretaceous, and the northern subduction could trace back to L-Triassic (228 Ma) and experienced episodic low-angle subduction, slab rollback (190-140 Ma) and oceanic ridge subduction (135-100 Ma). The 100–92 Ma magmatic gap, 92–60 Ma magmatic flare-up and L-Cretaceous angular unconformities indicate that the double-sided subduction of the BNTO resulted in soft collision with oceanic lithosphere detachment.  相似文献   

11.
In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern margin of the Karakoram Plate at the site of the Shyok Suture Zone turned Kohistan to become an Andean\|type margin. The Neotethys was completely subducted at the southern margin of Kohistan by Early Tertiary, leading to collision between Kohistan and continental crust of the Indian plate at the site of the Main mantle thrust.More than 80% of the Kohistan terrane comprises plutonic rocks of (1) ultramafic to gabbroic composition forming the basal crust of the intra\|oceanic stage of the island arc, and (2) tonalite\|granodiorite\|granite composition belong to the Kohistan Batholith occupying much of the intermediate to shallow crust of the terrane mostly intruded in the Andean\|type margin stage [2] . Both these stages of subduction\|related magmatism were associated with volcanic and sedimentary rocks formed in Late Cretaceous and Early Tertiary basins. This study addresses tectonic configuration of Early Tertiary Drosh basin exposed in NW parts of the Kohistan terrane, immediately to the south of the Shyok Suture Zone.  相似文献   

12.
大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例   总被引:1,自引:0,他引:1  
大陆弧岩浆带位于汇聚板块的前缘,记录了洋陆俯冲过程和大陆地壳生长过程,是研究壳幔相互作用的天然实验室。越来越多的研究发现,大陆弧岩浆的生长与侵位并不是均一的、连续的过程,而是呈现阶段性、峰期性特征,即幕式岩浆作用。弧岩浆峰期与岩浆平静期相比,岩浆增生速率显著增强,易于发生岩浆聚集,继而形成大的岩基,如北美西部科迪勒拉造山带内华达岩基、半岛岩基等。藏南冈底斯岩浆带位于拉萨地体南缘,属于印度-亚洲碰撞带的上盘,其南侧与喜马拉雅地体以雅鲁藏布蛇绿岩带为界。冈底斯弧岩浆形成时代集中在240~50 Ma期间,其形成与演化与新特提斯洋壳岩石圈板片俯冲到拉萨地体之下密切相关。因此,对冈底斯弧型岩浆作用的研究,将很好地揭示大陆型弧岩浆的演化过程,继而反演洋-陆俯冲过程,以及壳幔相互作用过程。通过对冈底斯岩浆带岩浆岩锆石U-Pb及Lu-Hf同位素,以及弧前和前陆盆地碎屑锆石U-Pb和Lu-Hf同位素的收集和整理,结合已经发表的区域地质资料的总结,我们发现冈底斯弧型岩浆演化具有如下特点:1幕式侵位,岩浆峰期为100~80 Ma和65~40 Ma,中间为岩浆平静期;2峰期阶段岩浆聚集,形成巨大岩基;岩石同位...  相似文献   

13.
Variscan to Alpine magmatic activity on the North Tethys active Eurasian margin in the Caucasus region is revealed by 40Ar/39Ar ages from rocks sampled in the Georgian Crystalline basement and exotic blocs in the Armenian foreland basin. These ages provide insights into the long duration of magmatic activity and related metamorphic history of the margin, with: (1) a phase of transpression with little crustal thickening during the Variscan cycle, evidenced by HT-LP metamorphism at 329–337 Ma; (2) a phase of intense bimodal magmatism at the end of the Variscan cycle, between 303 and 269 Ma, which is interpreted as an ongoing active margin during this period; (3) further evolution of the active margin evidenced by migmatites formed at ca. 183 Ma in a transpressive setting; (4) paroxysmal arc plutonic activity during the Jurassic (although the active magmatic arc was located farther south than the studied crystalline basements) with metamorphic rocks of the Eurasian basement sampled in the Armenian foreland basin dated at 166 Ma; (5) rapid cooling suggested by similar within-error ages of amphibole and muscovite sampled from the same exotic block in the Armenian fore-arc basin, ascribed to rapid exhumation related to extensional tectonics in the arc; and finally (6) cessation of ‘Andean’-type magmatic arc history in the Upper Cretaceous. Remnants of magmatic activity in the Early Cretaceous are found in the Georgian crystalline basement at c. 114 Ma, which is ascribed to flat slab subduction of relatively hot oceanic crust. This event corresponds to the emplacement of an oceanic seamount above the N Armenian ophiolite at 117 Ma. The activity of a hot spot between the active Eurasian margin and the South Armenian Block is thought to have heated and thickened the Neo-Tethys oceanic crust. Finally, the South Eurasian margin was uplifted and transported over this hot oceanic crust, resulting in the cessation of subduction and the erosion of the southern edge of the margin in Upper Cretaceous times. Emplacement of Eocene volcanics stitches all main collisional structures.  相似文献   

14.
本文以贺根山缝合带呼都格奥长花岗岩体为研究对象,通过野外地质调查和岩石学、地球化学、锆石U-Pb年代学研究,讨论岩石成因、构造环境、TTG岩浆事件及古亚洲洋俯冲消亡过程。岩石地球化学研究表明,呼都格岩体富硅(SiO2=66.27%~71.59%)、高铝(Al2O3=15.23%~15.94%)、富钠(Na2O=4.13%~6.59%)、低钾(K2O=1.72%~2.53%),相对高锶(Sr=196.60×10-6~465.40×10-6)、低钇(Y=5.70×10-6~12.63×10-6),富集Ba、Sr等大离子亲石元素和LREE,亏损Nb、Ta、Ti、P等高场强元素和HREE,无明显Eu异常。岩石学和岩石地球化学特征表明,呼都格岩体属于以奥长花岗岩为主的英云闪长岩-奥长花岗岩-花岗闪长岩TTG岩石组合。这套TTG组合除Sr、Mg、Ni和Cr含量相对较低之外,与高Si埃达克岩的地球化学特征...  相似文献   

15.
Knowledge of Trans-Himalayan tectono-magmatic evolution is critical to understanding the complex pre-collisional history of southern Eurasia active continental margin. It has been proposed that magmatic rocks of the Trans-Himalayan batholith, extending from southern Tibet to Southeast Asia, are now exposed as the Western Myanmar Arc and Central Granite Belt in Myanmar, yet origin, emplacement, and relationships of the two juxtaposed belts remain poorly constrained. In this study, 2D seismic and drilling data for the Western Myanmar Arc, zircon U-Pb age and Hf isotope and whole-rock geochemical data for magmatic rocks from the arc have been applied. Our seismic profiles, borehole stratigraphic sequences and zircon U-Pb data show that a typical arc-basin system was well developed along the western Myanmar continental margin. The magmatic arc has experienced at least three igneous events in the mid-Cretaceous (110–90 Ma), latest Cretaceous-Early Paleocene (69–64.5 Ma) and Eocene (53–38 Ma), as well as three associated uplift processes in the Late Cretaceous, Eocene and Late Oligocene. Whole-rock geochemical characteristics and zircons showing variable but predominately positive εHf(t) values, suggest a significant juvenile mantle source involving a proportion of ancient subducted sediments and juvenile crustal materials for these typical arc-related magmatic rocks. The identification of mid-Cretaceous to Paleogene magmatic rocks having positive εHf(t) values from the Western Myanmar Arc: 1) indicates that the magmatism can be correlated with the Gangdese arc within the Lhasa terrane of the southern Tibetan Plateau; 2) provides evidence for the proximal-derived model that Paleogene sediments in the Central Myanmar Basin were from the Western Myanmar Arc, but were not delivered by the paleo-Yarlung Tsangpo-Irrawaddy river system from the Gangdese arc; and 3) enables a model of eastward subduction of the Neo-Tethyan/Indian oceanic crust to reflect onset of the magmatism at the mid-Cretaceous and a long-existed back-arc extension in western Myanmar.  相似文献   

16.
The Güira de Jauco metamorphic sole, below the Moa-Baracoa ophiolite (eastern Cuba), contains strongly deformed amphibolites formed at peak metamorphic conditions of 650–660°C, approximately 8.6 kbar (~30 km depth). The geochemistry, based on immobile elements of the amphibolites, suggests oceanic lithosphere protholiths with a variable subduction component in a supra-subduction zone environment. The geochemical similarity and tectonic relations among the amphibolites and the basic rocks from the overlying ophiolite suggest a similar origin and protholith. New hornblende 40Ar/39Ar cooling ages of 77–81 Ma obtained for the amphibolites agree with this hypothesis, and indicate formation and cooling/exhumation of the sole in Late Cretaceous times. The cooling ages, geochemical evidence for a back-arc setting of formation of the mafic protoliths, and regional geology of the region allow proposal of the inception of a new SW-dipping subduction zone in the back-arc region of the northern Caribbean arc during the Late Cretaceous (ca. 90–85 Ma). Subduction inception was almost synchronous with the main plume pulse of the Caribbean–Colombian Oceanic Plateau (92–88 Ma) and occurred around 15 million years before arc-continent collision (75 Ma–Eocene) at the northern leading edge of the Caribbean plate. This chronological framework suggests a plate reorganization process in the region triggered by the Caribbean–Colombian mantle plume.  相似文献   

17.
The composite Zhaheba ophiolite complex, exposed in Eastern Junggar in the Southern Altaids, records an unusually long record of oceanic crust and magmatic arc evolution. The Zhaheba ophiolite complex consists of ultramafic rocks, gabbro, diorite, basalt and chert intruded by diabase dikes and diorite porphyry. These rocks are overlain by a several-km-thick section of tuffaceous rocks, volcaniclastic sedimentary rocks, and intermediate volcanic rocks. The igneous rocks of the ophiolite complex show negative Nb and Ta anomalies and LREE enrichment relative to HREE, suggesting the influence of fluids derived from a subducting oceanic slab. The LA-ICPMS U–Pb age of zircons from gabbro is 495.1 ± 3.5 Ma. Zircon ages from diorite and basalt are 458.3 ± 7.2 Ma and 446.6 ± 6.0 Ma, respectively. The basalt is locally overlain by bedded chert. Diabase dikes and diorite porphyry yield the U–Pb ages of 421.5 ± 4.1 Ma and 423.7 ± 6.5 Ma, respectively. The age of stratigraphically lower part of the overlying volcanic–volcaniclastic section is constrained to be about 410 Ma, the maximum depositional age of the tuffaceous sandstone from U–Pb detrital zircon ages. Late rhyolite at the top of the stratigraphic section yielded a U–Pb zircon age of 280.3 ± 3.7 Ma. The age and stratigraphic relationships for the Zhaheba ophiolite complex and related rocks suggest that the period of ~ 70 Ma of initial supra-subduction magmatism was followed by construction of a mature island arc that spanned an additional 140 Ma. Many other ophiolites in the southern Altaids appear to record similar relationships, and are represented as substrates of oceanic island arcs covered by island arc volcanism in supra-subduction zone. The occurrence of the Zhaheba ophiolite complex with tuffaceous and intermediate to felsic volcanic rocks is different from the rock association of classic Tethyan SSZ ophiolites but similar to some ophiolites in North America. Although the Zhaheba ophiolite belt is flanked by the Dulate arc in the north and Yemaquan arc in the south, it cannot stand a suture between two arcs. It is suggested that Devonian–Carboniferous Dulate arc was built on the late Cambrian–middle Ordovician Zhaheba supra-subduction oceanic crust. The late Carboniferous rocks and early Permian rocks in Dulate arc are interpreted to form in the extensional process within Zhaheba–Dulate arc composite system.  相似文献   

18.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

19.
范彩伟  胡林  胡潜伟 《地球科学》2022,47(7):2328-2336
晚中生代是古太平洋板块俯冲和南海北部岩浆弧发育时期,开展珠江口盆地KP1-1-1井钻遇的浅变质砂岩的近源沉积研究有助于揭示岩浆弧源区的构造特点.根据LA-ICPMS碎屑锆石分析,KP1-1-1浅变质砂岩中存在129~155 Ma、155~172 Ma和172~196 Ma三个年龄组分,这一特点与区域上构造岩浆事件一致.碎屑岩浆锆石流体活动性元素富集(如U和Th),高场强元素亏损(如Nb、Hf和Ti);元素组成U/Yb(0.34~3.92)、Sc/Yb(0.48~2.28)、Hf/Th(14.4~186.6)和Th/Nb(24.3~462.7)具有大陆岩浆弧特点;计算的锆石Ti温度为551~786℃,表明属于低温弧岩浆作用.碎屑岩中172~196 Ma锆石组分记录了东沙-大仑-雁荡岩浆弧向西南的进一步延伸,与侏罗纪早期古太平洋斜向俯冲到华南陆块之下有关.155~172 Ma岩浆锆石与古板块强烈俯冲有关,对应于华南165~150 Ma大规模花岗质岩浆活动.129~155 Ma时期板块俯冲减弱或俯冲带后撤,可与浙闽同时期板内强烈火山活动对比.碎屑岩中测得最年轻年龄为128.8 Ma,表明KP1-1-1钻遇浅变质砂岩形成时代晚于128 Ma,应属于白垩系,不是传统上认为的下古生界岩系.   相似文献   

20.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号