首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The southern Midyan terrane is a composite Tonian to Ediacaran tectonostratigraphic crustal block in the northern Arabian Shield that prior to Red Sea opening was contiguous with coeval rocks in the Eastern Desert of Egypt and Sinai. Ion microprobe (sensitive high-resolution ion microprobe [SHRIMP]) dating of 12 rock samples described here and the results of other dating programmes establish a clear timeframe for depositional, intrusive, and structural events in the region and provide a chronology of tectonism in this part of the Arabian-Nubian Shield. Deposition of Zaam and Bayda group volcanosedimentary rocks and emplacement of mafic-ultramafic complexes and TTG-type diorite, tonalite, and granodiorite denote formation of the Tonian (780–715 Ma) Zaam arc and fore-arc ophiolite above a possible west-dipping subduction system in the southern part of the Midyan terrane. Convergence with the Hijaz terrane farther south and obduction of ophiolite nappes resulted by ~700 Ma in development of the Yanbu suture. Ongoing or a new subduction system led to a ~705–660 Ma Cryogenian pulse of magmatism represented by I-type calc-alkaline diorite, granodiorite, and granite that have volcanic-arc and syn-collisional granite affinities. This was followed, after a brief end-Cryogenian hiatus, by a 635–~570 Ma period of Ediacaran magmatism marked by monzogranite, syenogranite, and minor gabbro and diorite. These rocks are reported to have within-plate to volcanic-arc and syncollision chemical characteristics but their precise tectonic setting is uncertain. Structurally, the intrusions are diapiric and were evidently emplaced in an extensional regime consistent with an overlap between intrusion and Najd faulting associated, at this time, with transpressional collision and northward extension through much of the ANS. Terminal magmatism in the southern Midyan terrane postdated cessation of Najd faulting at ~575 Ma and resulted in the emplacement of undeformed within-plate A-type alkali-feldspar granites and mafic (lamprophyre) and felsic dikes.  相似文献   

2.
Geochemical compositions of mafic igneous rocks in the Katangan basin in Central Africa (Democratic Republic of Congo, hereafter Congo, and Zambia) provide the basis for the geodynamic interpretation of the evolution of this Neoproterozoic basin located between the Congo and Kalahari cratons. The Katangan basin is subdivided into five major tectonic units: the Katangan Aulacogen, the External Fold and Thrust Belt, the Domes Region, the Synclinorial Belt and the Katangan High. The metamorphosed mafic igneous rocks investigated occur in the Katangan Aulacogen, the External Fold and Thrust Belt and the Domes Region. The earliest magmatic activity produced continental tholeiites emplaced on Paleoproterozoic crust during the early stages of intraplate break-up. This continental tholeiite magmatism was followed by an association of alkaline and tholeiitic basalts emplaced in the Katangan continental rift and then by tholeiitic basalts with E-MORB affinity marking a young oceanic crust. These volcanic associations mark different stages of evolution from pre-rift continental break-up up to a continental rift similar to the East African rift system and then to a Red Sea type incipient oceanic rift. A similar evolution occurs in the Damaran basin in southwestern Africa, although no pre-rift continental tholeiites have been recorded in this segment of the Pan-African belt system.  相似文献   

3.
The Vestfold Block, like other Archaean cratons in East Antarctica and elsewhere, consists predominantly of felsic orthogneiss (Mossel and Crooked Lake gneisses), with subordinate mafic granulite (Tryne metavolcanics) and paragneiss (Chelnok supracrustals). Two major periods of continental crust formation are represented. The Mossel gneiss (metamorphosed about 3,000 Ma ago) is mainly of tonalitic composition, and is similar to much of the roughly coeval Napier Complex in Enderby Land. The Crooked Lake gneiss was emplaced under high-grade conditions about 2,450 Ma ago and comprises a high proportion of more potassic rocks (monzodioritic and monzonitic suites), as well as tonalite and minor gabbro and diorite. Both Mossel and Crooked Lake gneisses are depleted in Y and have moderate to high Sr, Ce/Y, and Ti/Y, consistent with melting of a mafic source (?subducted hydrated oceanic crust) leaving major residual hornblende (± garnet). Most Crooked Lake gneisses are more enriched in incompatible elements (P, Sr, La, Ce, and particularly Rb, Ba, and K) than Mossel gneisses, suggesting derivation from a more enriched mafic source. The Vestfold Block contains few orthogneisses derived by melting of older felsic crustal rocks, in marked contrast to the Archaean Napier Complex and, in particular, southern Prince Charles Mountains. Both Mossel and Crooked Lake tonalites are strongly depleted in Rb, K, Th, and U, and have very low Rb/Sr and high K/Rb; more potassic orthogneisses are depleted in Th, U, and, to lesser extents, Rb. Tryne metavolcanics are depleted in Th and Rb, but appear to have been enriched in K (and probably Na), possibly during early low-grade alteration.  相似文献   

4.
 The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an “assimilation region” where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels. Received: 2 May 1995 / Accepted: 1 November 1995  相似文献   

5.
Based on the volume magnetic susceptibility and specific gravity measurements and mineral and lithologic identification results for 540 samples,the rock type,density,and magnetic susceptibility of rocks from northern Borneo were analyzed,and the applicability of gravity and magnetic data to the lithologic identification of the Mesozoic strata in the southern South China Sea was assessed accordingly.The results show that there are 3 types and 25 subtypes of rocks in northern Borneo,mainly intermediate-mafic igneous rocks and exogenous clastic sedimentary rocks,with small amounts of endogenous sedimentary rocks,felsic igneous rocks,and metamorphic rocks.The rocks that are very strongly-strongly magnetic and have high-medium densities are mostly igneous rocks,tuffaceous sandstones,and their metamorphic equivalents.The rocks that are weakly magnetic-non-magnetic and have medium-very low densities are mostly conglomerates,sandstones,siltstones,mudstones,and coal.The rocks that are weakly magnetic-diamagnetic and have highmedium densities are mostly limestones and siliceous rocks.The Cenozoic rocks are characterized by low densities and medium susceptibilities;the Mesozoic rocks are characterized by medium densities and medium-high susceptibilities;and the pre-Mesozoic rocks are characterized by high densities and low magnetism.Based on these results and the distribution characteristics of the various rock types,it was found that the pre-Mesozoic rocks produce weak regional gravity anomalies;the Mesozoic sedimentary rocks produce negative regional gravity anomalies;whereas the Mesozoic igneous rocks produce positive regional gravity anomalies;and the Cenozoic igneous rocks produce positive regional gravity anomalies.The regional high magnetic anomalies in the southern part of the South China Sea originate from the Mesozoic mafic igneous rocks and their metamorphic equivalents;and the regional medium magnetic anomalies may be produced by the felsic igneous rocks and their metamorphic equivalents.Accordingly,the identification of the Mesozoic lithology in the southern South China Sea shows that the Mesozoic sedimentary rocks are distributed over a large area of the southern South China Sea.Thus,it is concluded that the Mesozoic strata in this area have the potential for oil and gas exploration.  相似文献   

6.
Several Precambrian mafic–ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic–Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.  相似文献   

7.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   

8.
The Precambrian Dullstroom Formation of South Africa, which is predominantly composed of basaltic andesites interbedded with subordinate sedimentary and felsic volcanic strata, represents the first phase of an extended period of magmatism that was responsible for the Bushveld Magmatic Province, including the extrusive Rooiberg Group and the intrusive Bushveld Complex. New geochemical and isotopic data for the Dullstroom Formation are presented in an effort to elucidate the petrogenetic processes operative during the initiation of this magmatic episode. The volcanic units of the central portion of the Dullstroom Formation have been subdivided into at least three interbedded compositional groups: low Ti mafic to intermediate units, high-Ti mafic to intermediate units, and high Mg felsic units. High Ti and low Ti volcanic units are similar in some compositional characteristics to basalts of the nearby northern and southern provinces, respectively, of the Mesozoic Karoo continental flood basalts. Isotopic and compositional data for low Ti Dullstroom strata are consistent with bulk assimilation into a melt similar in composition to a southern Karoo basalt of 20% upper continental crust accompanied by 20% fractional crystallization of pyroxene and plagioclase. Isotopic and compositional data for high Ti Dullstroom strata are consistent with magma mixing of 30% northern Karoo K-rich basalt and 70% southern Karoo basalt followed by 20% assimilation of upper continental crust and 20% fractional crystallization of pyroxene and plagioclase. Compositions of high Mg felsic volcanic strata are consistent with 25% assimilation of a mixture of silica-rich sedimentary rock and upper continental crust into a melt similar in composition to low Ti volcanic units with 25% fractional crystallization of pyroxene and plagioclase. However, it has been suggested that compositions of these high Mg felsic strata may also be consistent with interaction of a crustal melt. Assimilation, fractional crystallization, and magma mixing that apparently affected these Dullstroom Formation volcanic strata may have occurred in a series of shallow magma chambers. These data are consistent with the suggestion that Dullstroom Formation volcanic rocks are the result of a mantle plume. Mantle plume origin also is suggested by the large volume of intrusive and extrusive strata associated with this magmatic episode. These data do not support the hypothesis that the Bushveld Complex and the Rooiberg Group formed by impacts of a cluster of comets or asteroids. Received: 14 October 1998 / Accepted: 17 May 1999  相似文献   

9.
陈兵  熊富浩  马昌前  陈越  黄虎 《地球科学》2021,46(6):2057-2072
壳-幔岩浆相互作用如何影响长英质火成岩的岩石学多样性是当前岩石学研究的焦点问题之一.以岩石类型丰富的东昆仑白日其利长英质岩体和暗色微粒包体为研究对象,开展系统的锆石U-Pb年代学、矿物学、全岩元素地球化学和Sr-Nd-Hf同位素研究,探讨和解析这一重要科学问题.LA-ICPMS锆石U-Pb年代学研究表明,暗色微粒包体(247.8±2.0 Ma)与二长花岗岩(247.5±1.4 Ma)、花岗闪长岩(248.8±2.1 Ma)和石英闪长岩(248.8±1.5 Ma)均侵位结晶于早三叠世.岩相学和矿物学研究表明,白日其利长英质岩石与包体的成因机制与壳-幔岩浆的机械或化学混合作用密切相关.元素地球化学和Sr-Nd-Hf同位素组成研究揭示,幔源镁铁质岩浆端元起源于受俯冲板片流体交代的富集地幔熔融,而壳源长英质岩浆端元则起源于东昆仑古老的变质杂砂岩基底.岩石成因分析揭示,幔源镁铁质岩浆侵入长英质晶粥岩浆房,促使长英质晶粥发生活化,随后壳-幔岩浆端元以不同比例和不同方式发生机械和化学混合等相互作用,从而形成镁铁质岩墙、包体、石英闪长岩和花岗闪长岩等多种岩石类型.晶粥状态下壳-幔岩浆相互作用是控制东昆仑长英质火成岩多样性和大陆地壳生长演化的重要方式.   相似文献   

10.
The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochemical,and zircon U-Pb geochronological data of various metamorphic rocks(felsic to mafic orthogneiss,pelitic schist,and felsic paragneiss) from the Zambezi Belt in northeastern Zimbabwe,and evaluate the timing and P-T conditions of the collisional event as well as protolith formation.Geochemical data of felsic orthogneiss indicate within-plate granite signature,whereas those of mafic orthogneiss suggest MORB,ocean-island,or within-plate affinities.Metamorphic P-Testimates for orthogneisses indicate significant P-T variation within the study area(700-780 C/6.7-7.2 kbar to 800-875 C/10-11 kbar) suggesting that the Zambezi Belt might correspond to a suture zone with several discrete crustal blocks.Zircon cores from felsic orthogneisses yielded two magmatic ages:2655±21 Ma and 813士5 Ma,which suggests Neoarchean and Early Neoproterozoic crustal growth related to within-plate magmatism.Detrital zircons from metasediments display various ages from Neoarchean to Neoproterozoic(ca.2700-750 Ma).The Neoarchean(ca.2700-2630 Ma) and Paleoproterozoic(ca.2200-1700 Ma) zircons could have been derived from the adjacent Kalahari Craton and the Magondi Belt in Zimbabwe,respectively.The Choma-Kalomo Block and the Lufilian Belt in Zambia might be proximal sources of the Meso-to Neoproterozoic(ca.1500-950 Ma) and early Neoproterozoic(ca.900-750 Ma) detrital zircons,respectively.Such detrital zircons from adjacent terranes possibly deposited during late Neoproterozoic(744-670 Ma),and subsequently underwent highgrade metamorphism at 557-555 Ma possibly related to the collision of the Congo and Kalahari Cratons during the latest Neoproterozoic to Cambrian.In contrast,670-627 Ma metamorphic ages obtained from metasediments are slightly older than previous reports,but consistent with~680-650 Ma metamorphic ages reported from different parts of the Kuunga Orogen,suggesting Cryogenian thermal events before the final collision.  相似文献   

11.
The Serbo-Macedonian Massif (SMM) represents a composite crystalline belt within the Eastern European Alpine orogen, outcropping from the Pannonian basin in the north, to the Aegean Sea in the south. The central parts of the massif (i.e. southeastern Serbia, southwestern Bulgaria, eastern Macedonia) consist of the medium- to high-grade Lower Complex, and the low-grade Vlasina Unit. New results of U–Pb LA-ICP-MS analyses, coupled with geochemical analyses of Hf isotopes on magmatic and detrital zircons, and main and trace element concentrations in whole-rock samples suggest that the central SMM and the basement of the adjacent units (i.e. Eastern Veles series and Struma Unit) originated in the central parts of the northern margin of Gondwana. These data provided a basis for a revised tectonic model of the evolution of the SMM from the late Ediacaran to the Early Triassic.The earliest magmatism in the Lower Complex, Vlasina Unit and the basement of Struma Unit is related to the activity along the late Cadomian magmatic arc (562–522 Ma). Subsequent stage of early Palaeozoic igneous activity is associated with the reactivation of subduction below the Lower Complex and the Eastern Veles series during the Early Ordovician (490–478 Ma), emplacement of mafic dykes in the Lower Complex due to aborted rifting in the Middle Ordovician (472–456 Ma), and felsic within-plate magmatism in the early Silurian (439 ± 2 Ma). The third magmatic stage is represented by Carboniferous late to post-collisional granites (328–304 Ma). These granites intrude the gneisses of the Lower Complex, in which the youngest deformed igneous rocks are of early Silurian age, thus constraining the high-strain deformation and peak metamorphism to the Variscan orogeny. The Permian–Triassic (255–253 Ma) stage of late- to post-collisional and within-plate felsic magmatism is related to the opening of the Mesozoic Tethys.  相似文献   

12.
Mafic igneous rocks are widespread in the Nevado-Filábride Complex, the lowermost metamorphic unit of the internal zones of the Betic Cordilleras. They form intrusive, small, discontinuous bodies, predominantly dikes with subordinate small lava flows. The entire complex underwent alpine compressional metamorphism during the Paleogene continental collision, resulting in eclogites and blueschists in the mafic bodies and high-pressure assemblages in the intruded metasediments. Locally, weakly metamorphosed or completely unmetamorphosed igneous rocks with the same textural features occur as patches surrounded by eclogitized igneous rocks. The bulk rock chemistry of unmetamorphosed and completely metamorphosed mafic igneous rocks is consistent with an alkaline to transitional tholeiitic magmatism with typical within-plate geochemical characteristics. All but a few samples are nepheline normative and display REE and trace element characteristics typical of continental, rift-related magmatism. This conclusion is strongly supported by the mineral chemistry of the major constituents, in particular the calcic Ti-rich character of clinopyroxene, the lack of orthopyroxene, and the occurrence of kaersutitic amphibole. Incompatible trace element abundances and Sr and Nd isotopes support the provenance of these magmas from a variably metasomatized previously depleted sub-continental lithospheric mantle source. Received: 5 July 1999 / Accepted: 28 February 2000  相似文献   

13.
《Precambrian Research》1986,34(1):37-68
The early Proterozoic supracrustal rocks of the Salida area of central Colorado consist of strongly bimodal sequences of volcanogenic rocks. The mafic rocks — basalts, basaltic volcaniclastics, and related gabbro sheets — are distinctly tholeiitic, display a strong iron-enrichment trend, and typically contain less than 50% SiO2. The felsites are rhyolites to dacites and contain more than 70% SiO2.Major and trace element modeling show that the mafic rocks underwent two stages of crystal fractionation, the first involving olivine and plagioclase, the second involving plagioclase and clinopyroxene. Fractionation occurred within individual injections as they rose toward the surface rather than in a single magma chamber at depth. Field relations and major element data support the derivation of the felsic rocks from a magma generated by anatexis of sialic crust. However, the low Sr and high heavy REE concentrations in these rocks are not compatible with a partial melting model and suggest that the felsic volcanic rocks could have been derived by extensive fractional crystallization of the mafic magma.Normalized trace element abundances and trace element ratios of the mafic rocks are most like continental flood basalts such as the Columbia River basalts. They also display some similarity to immature back-arc basin tholeiites developed on continental crust, such as those of the Sarmiento complex. The felsic rocks have strong chemical affinities to within-plate rhyolites rather than calc-alkaline rhyolites from orogenic areas. The chemical data, as well as the petrographic, stratigraphic, and regional field data all indicate that the early Proterozoic supracrustal rocks of the Salida area developed along a continental margin, probably within an immature back-arc basin underlain by sialic crust. Remnants of the arc system of similar age may lie to the south in northern New Mexico and southwestern Colorado.  相似文献   

14.
Gold bearing metavolcanics of Gadag Gold Field (GGF) are represented by mafic (metabasalt, metabasaltic andesite), intermediate (metaandesite) and felsic (metadacite, metarhyolite) rocks. Mafic metavolcanic rocks are low-K Fe-rich tholeiites and were derived by partial melting of the upper mantle sources with high Fe/Mg ratios and low M values. Intermediate and felsic metavolcanics were formed by remelting of these tholeiites mainly in crustal regimes. Although a complete sequence of metavolcanic rocks from mafic to intermediate to felsic fractions occurs, these products were not the result of differentiation from a single magma, crustal contamination was involved in the formation of intermediate and felsic rocks. A clear gap in the chemical composition as well as index of differentiation among the mafic, intermediate and felsic fractions indicate that these metavolcanics constitute a typical bimodal character. It is suggested that these metavolcanics were emplaced in an active continental margin or a continental island arc setting. The petrogenetic processes of formation of Fe-rich tholeiites that evolved in an active continental margin or a continental island arc setting could have provided a favourable geochemical environment for gold mineralisation under the conditions of deformation and metamorphism.  相似文献   

15.
Abstract Small unexploited copper-lead-zinc deposits, characterized by a distinctive wall-rock association of cordierite quartzite, silica-undersaturated rocks, calc-silicate rocks and impure marbles, occur in quartzofeldspathic gneisses and mafic granulites of the Strangways Metamorphic Complex, central Arunta Block, central Australia. Available data support the hypothesis that these are metamorphosed volcanogenic ore bodies. The chemical compositions of the quartzofeldspathic gneisses are comparable with those of less metamorphosed felsic igneous rocks, particularly the felsic igneous rocks emplaced in the North Australian Orogenic Province in the interval 1880–1800 Ma; and the mafic granulites are chemically similar to basalts (olivine-normative tholeiites). The wall-rock suite can be correlated from chemistry and lithological association with the suites of wall rocks found in unmetamorphosed volcanogenic ore deposits. That the protolith of the cordierite quartzites may well have been leached tuff, similar to the illite-chlorite-quartz tuff found in volcanogenic ore deposits, is also shown by retrogression of the granulitefacies assemblage: cordierite-garnet-ortho-pyroxene-biotite-quartz in the cordierite quartzites to cordierite-anthophyllite-bearing assemblages and thence to chlorite-muscovite-quartz assemblages. Lenses of silica-undersaturated rocks with spinel and, less commonly, sapphirine are interpreted as the metamorphosed equivalents of chlorite-rich pods found within leached tuffs in volcanogenic ore deposits. The wall rocks form sheet-like bodies; this suggests that they were deposited in relatively shallow water, thus precluding the formation of massive sulphides.  相似文献   

16.
赵子福  代富强  陈启 《地球科学》2019,44(12):4119-4127
俯冲到地幔深度的地壳物质不可避免地在板片-地幔界面与地幔楔发生相互作用,由此形成的超镁铁质交代岩就是造山带镁铁质火成岩的地幔源区.因此,造山带镁铁质火成岩为研究俯冲地壳物质再循环和壳-幔相互作用提供了重要研究对象.为了揭示俯冲陆壳物质再循环的机制和过程,对大别造山带碰撞后安山质火山岩开展了元素和同位素地球化学研究.这些安山质火山岩的SIMS锆石U-Pb年龄为124±3~130±2 Ma,表明其形成于早白垩世.此外,残留锆石的U-Pb年龄为中新元古代和三叠纪,分别对应于大别-苏鲁造山带超高压变火成岩的原岩年龄和变质年龄.它们具有岛弧型微量元素特征、富集的Sr-Nd-Hf同位素组成,以及变化的且大多不同于正常地幔的锆石δ18O值.这些元素和同位素特征指示,这些安山质火山岩是交代富集的造山带岩石圈地幔部分熔融的产物.在三叠纪华南陆块俯冲于华北陆块之下的过程中,俯冲华南陆壳来源的长英质熔体交代了上覆华北岩石圈地幔楔橄榄岩,大陆俯冲隧道内的熔体-橄榄岩反应产生了富沃、富集的镁铁质地幔交代岩.这种地幔交代岩在早白垩世发生部分熔融,就形成了所观察到的安山质火山岩.因此,碰撞造山带镁铁质岩浆岩的地幔源区是通过大陆俯冲隧道内板片-地幔相互作用形成的,而加入地幔楔中长英质熔体的比例决定了这些镁铁质岩浆岩的岩石化学和地球化学成分.   相似文献   

17.
The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu–Mo, Pb–Zn–Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo–U, Pb–Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn–W–Li–Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt–trachydacite series and rhyolite of the Turga Series, which fill the Strel’tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.  相似文献   

18.
Ordovician igneous rocks in the western Acatlán Complex (Olinalá area) of southern Mexico include a bimodal igneous suite that intrudes quartzites and gneisses of the Zacango Unit, and all these rocks were polydeformed and metamorphosed in the amphibolite facies during the Devono-Carboniferous. The Ordovician igneous rocks consist of the penecontemporaneous amphibolites, megacrystic granitoids and leucogranite, the latter dated at ca. 464 Ma. Geochemical and Sm–Nd data indicate that the amphibolites have a differentiated tholeiitic signature, and that its mafic protoliths formed in an extensional setting transitional between within-plate and ocean floor. The amphibolites are variably contaminated by a Mesoproterozoic crustal source, inferred to be the Oaxacan basement exposed in the adjacent terrane. The most primitive samples have εNdt (t = 465 Ma) values significantly below that of the contemporary depleted mantle and were probably derived from the sub-continental lithospheric mantle. The megacrystic granites were most probably derived by partial melting of an arc crustal source (similar to the Oaxacan Complex) and triggered by the ascent of mafic magma from the lithospheric mantle. Sm–Nd isotopic signatures suggest that metasedimentary rocks from Zacango Unit were derived from adjacent Oaxacan Complex. Trace elements relationships (e.g. La/Th vs. Hf) and REE patterns suggest provenance in felsic-intermediate igneous rocks with a calc-alkaline signature. The Ordovician bimodal magmatism is inferred to have resulted from rifting on the southern flank of the Rheic Ocean and is an expression of a major rifting event that occurred along much of the northern Gondwanan margin in the Ordovician.  相似文献   

19.
South Greenland has been the site of historic mining of cryolite, copper, graphite and gold, hosts mineral deposits with gold, uranium, zinc, niobium, tantalum, zirconium, hafnium, REE, iron, titanium, vanadium, fluorite and graphite, and has additional potential for lithium, beryllium, phosphorus, gallium and thorium. Data from stream sediment geochemical surveys document that South Greenland is enriched in a range of these elements relative to the rest of Greenland and to estimates of the upper crust composition. Distribution patterns for individual elements within south Greenland exhibit enriched regions that are spatially related to lithological units, crustal structure and known mineralisation.The Northern Domain of South Greenland includes the southernmost part of the orthogneiss-dominated North Atlantic craton. Orogenic gold mineralisation is hosted by quartz veins and hydrothermally altered rocks associated with shear zones intersecting the Mesoarchaean Tartoq Group of mafic metavolcanic rocks. Geochemical exploration indicates that additional potential for gold mineralisation exists within Palaeoproterozoic supracrustal rocks overlying the Archaean basement.Rocks formed during the Palaeoproterozoic Ketilidian orogeny occupy a major part of South Greenland and has been divided into two domains. The Central Domain is underlain by the Julianehåb igneous complex forming a 100 km wide ENE–WSW zone centrally across South Greenland. Intrusive and extrusive, mostly felsic magmatic rocks were emplaced in two main stages (1850–1830 and 1800–1780 Ma) in a continental arc setting. Positive anomalies in aeromagnetic data indicate that mafic plutons are common in the late igneous complex. Intra-arc mafic metavolcanic rocks contain syngenetic stratabound copper sulphide and epigenetic shear zone-hosted copper–silver–gold mineralisation at Kobberminebugt and Kangerluluk, whereas metasedimentary and metapyroclastic rocks contain stratabound uraninite mineralisation. Orthomagmatic iron–titanium–vanadium mineralisation is hosted by a gabbro. A potential for porphyry-type mineralisation related to the late intrusive stages of the Julianehåb igneous complex is suggested by showings with copper, molybdenum and gold together with stream sediment anomalies for these elements. Vein-type uranium mineralisation occurs in fault zones in the Julianehåb igneous complex related to Mesoproterozoic rifting.The Southern Domain contains an assemblage of Palaeoproterozoic metasedimentary and metavolcanic rocks that underwent moderate to strong deformation, peak HT–LP metamorphism and partial melting with subsequent retrograde exhumation at 1790–1765 Ma. The supracrustal rocks contain syngenetic Au, As, Sb, U, and Zn mineralisation in volcanic or graphite- and sulphide-rich sedimentary environments; graphite was mined historically at two sites. Many stream sediment gold anomalies are located in a NE-trending belt along the boundary between the early Julianehåb complex and the supracrustal rocks to the south. They reflect a number of auriferous quartz vein occurrences, including the Nalunaq gold deposit, hosted in a system of shear zones and probably generated as orogenic gold during Ketilidian accretion. The 1755–1730 Ma, A-type Ilua plutonic suite is the latest magmatic event in the Ketilidian orogen.The 1300–1140 Ma Gardar period involved continental rifting, sedimentation and alkaline magmatism. Numerous dykes and 10 ring-shaped intrusion complexes were formed across South Greenland. An orthomagmatic iron–titanium–vanadium deposit is hosted by troctolitic gabbro. Residual magmas and fluids resulting from extreme magmatic differentiation, possibly combined with assimilation of older crust, created mineral deposits including cryolite that was mined at Ivigtut, large low-grade deposits of uranium–rare earth elements–zinc at Kvanefjeld and tantalum–niobium–rare earth element–zirconium at Kringlerne, in the Ilímaussaq complex, as well as tantalum–niobium–rare earth elements at Motzfeldt Sø in the Igaliko complex.The South Greenland crustal evolution records effects of mantle processes, such as lithospheric extension, subduction and underplating, which resulted in recurrent magma emplacement in tectonically active environments. As such, the geology of South Greenland reflects events and circumstances that are favourable to the generation and preservation of hydrothermal ore-forming fluid systems during the Ketilidian orogeny as well as to the development of extreme rock compositions within the Gardar alkaline igneous province.  相似文献   

20.
We discuss the question whether the late Mesoproterozoic and early Neoproterozoic rocks of eastern, central and southern Africa, Madagascar, southern India, Sri Lanka and South America have played any role in the formation and dispersal of the supercontinent Rodinia, believed to have existed between about 1000 and 750 Ma ago. First, there is little evidence for the production of significant volumes of ˜1.4–1.0 Ga (Kibaran or Grenvillian age) continental crust in the Mozambique belt (MB) of East Africa, except, perhaps, in parts of northern Mozambique. This is also valid for most terranes related to West Gondwana, which are made up of basement rocks older than Mesoproterozoic, reworked in the Brasiliano/Pan-African orogenic cycle. This crust cannot be conclusively related to either magmatic accretion processes on the active margin of Rodinia or continental collision leading to amalgamation of the supercontinent. So far, no 1.4–1.0 Ga rocks have been identified in Madagascar. Secondly, there is no conclusive evidence for a ˜1.0 Ga high-grade metamorphic event in the MB, although such metamorphism has been recorded in the presumed continuation of the MB in East Antarctica. In South America, even the Sunsas mobile belt, which is correlated with the Grenville belt of North America, does not include high-grade metamorphic rocks. All terranes with Mesoproterozoic ages seem to have evolved within extensional, aulacogen-type structures, and their compressional deformation, where observed, is normally much younger and is related to amalgamation of Gondwana. This is also valid for the Trans-Saharan and West Congo belts of West Africa.Third, there is also no evidence for post-1000 Ma sedimentary sequences that were deposited on the passive margin(s) of Rodinia. In contrast, the MB of East Africa and Madagascar is characterized by extensive structural reworking and metamorphic overprinting of Archaean rocks, particularly in Tanzania and Madagascar, and these rocks either constitute marginal parts of cratonic domains or represent crustal blocks (terranes or microcontinents?) of unknown derivation. This is also the case for most terranes included in the Borborema/Trans-Saharan belt of northeastern Brazil and west-central Africa, as well as those of the Central Goíás Massif in central Brazil and the Mantiqueira province of eastern and southeastern Brazil.Furthermore, there is evidence for extensive granitoid magmatism in the period ˜840 to <600 Ma whose predominant calc-alkaline chemistry suggests subduction-related active margin processes during the assembly of the supercontinent Gondwana. The location of the main Neoproterozoic magmatic arcs suggests that a large oceanic domain separated the core of Rodinia, namely Laurentia plus Amazonia, Baltica and West Africa, from several continental masses and fragments now in the southern hemisphere, such as the São Francisco/Congo, Kalahari and Rio de La Plata cratons, as well as the Borborema/Trans-Saharan, Central Goiás Massif and Paraná blocks. Moreover, many extensional tectonic events detected in the southern hemisphere continental masses, but also many radiometric ages of granitois that are already associated with the process of amalgamation of Gondwana, are comprised within the 800–1000 age interval. This seems incompatible with current views on the time of disintegration of Rodinia, assumed to have occurred at around 750 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号