首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gondwana Research》2013,24(4):1378-1401
The Qilian Orogen at the northern margin of the Tibetan Plateau is a type suture zone that recorded a complete history from continental breakup to ocean basin evolution, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. The Qilian Ocean, often interpreted as representing the “Proto-Tethyan Ocean”, may actually be an eastern branch of the worldwide “Iapetus Ocean” between the two continents of Baltica and Laurentia, opened at ≥ 710 Ma as a consequence of breakup of supercontinent Rodinia.Initiation of the subduction in the Qilian Ocean probably occurred at ~ 520 Ma with the development of an Andean-type active continental margin represented by infant arc magmatism of ~ 517–490 Ma. In the beginning of Ordovician (~ 490 Ma), part of the active margin was split from the continental Alashan block and the Andean-type active margin had thus evolved to western Pacific-type trench–arc–back-arc system represented by the MORB-like crust (i.e., SSZ-type ophiolite belt) formed in a back-arc basin setting in the time period of ~ 490–445 Ma. During this time, the subducting oceanic lithosphere underwent LT-HP metamorphism along a cold geotherm of ~ 6–7 °C/km.The Qilian Ocean was closed at the end of the Ordovician (~ 445 Ma). Continental blocks started to collide and the northern edge of the Qilian–Qaidam block was underthrust/dragged beneath the Alashan block by the downgoing oceanic lithosphere to depths of ~ 100–200 km at about 435–420 Ma. Intensive orogenic activities occurred in the late Silurian and early Devonian in response to the exhumation of the subducted crustal materials.Briefly, the Qilian Orogen is conceptually a type example of the workings of plate tectonics from continental breakup to the development and evolution of an ocean basin, to the initiation of oceanic subduction and formation of arc and back-arc system, and to the final continental collision/subduction and exhumation.  相似文献   

2.
Contention surrounds the Ediacaran–Cambrian geodynamic evolution of the palaeo-Pacific margin of Gondwana as it underwent a transition from passive to active margin tectonics. In Australia, disagreement stems from conflicting geodynamic models for the Delamerian Orogen, which differ in the polarity of subduction and the state of the subduction hinge (i.e., stationary or retreating). This study tests competing models of the Delamerian Orogen through reconstructing Ediacaran–Cambrian basin evolution in the Koonenberry Belt, Australia. This was done through characterising the mineral and U–Pb detrital zircon age provenance of sediments deposited during postulated passive and active margin stages. Based on these data, we present a new basin evolution model for the Koonenberry Belt, which also impacts palaeogeographic models of Australia and East Gondwana. Our basin evolution and palaeogeographic model is composed of four main stages, namely: (i) Ediacaran passive margin stage with sediments derived from the Musgrave Province; (ii) Middle Cambrian (517–500 Ma) convergent margin stage with sediments derived from collisional orogens in central Gondwana (i.e., the Maud Belt of East Antarctica) and deposited in a backarc setting; (iii) crustal shortening during the c. 500 Ma Delamerian Orogeny, and; (iv) Middle to Late Cambrian–Ordovician stage with sediments sourced from the local basement and 520–490 Ma igneous rocks and deposited into post-orogenic pull-apart basins. Based on this new basin evolution model we propose a new geodynamic model for the Cambrian evolution of the Koonenberry Belt where: (i) the initiation of a west-dipping subduction zone at c. 517 Ma was associated with incipient calc-alkaline magmatism (Mount Wright Volcanics) and deposition of the Teltawongee and Ponto groups; (ii) immediate east-directed retreat of the subduction zone positioned the Koonenberry Belt in a backarc basin setting (517 to 500 Ma), which became a depocentre for continued deposition of the Teltawongee and Ponto groups; (iii) inversion of the backarc basin during the c. 500 Delamerian Orogeny was driven by increased upper and low plate coupling caused by the arrival of a lower plate asperity to the subduction hinge, and; (iv) subduction of the asperity resulted in renewed rollback and upper plate extension, leading to the development of small, post-orogenic pull-apart basins that received locally derived detritus.  相似文献   

3.
《Gondwana Research》2014,25(3-4):1051-1066
The Early Palaeozoic Ross–Delamerian orogenic belt is considered to have formed as an active margin facing the palaeo-Pacific Ocean with some island arc collisions, as in Tasmania (Australia) and Northern Victoria Land (Antarctica), followed by terminal deformation and cessation of active convergence. On the Cambrian eastern margin of Australia adjacent to the Delamerian Fold Belt, island arc and backarc basin crust was formed and is now preserved in the Lachlan Fold Belt and is consistent with a spatial link between the Delamerian and Lachlan orogens. The Delamerian–Lachlan connection is tested with new zircon data. Metamorphic zircons from a basic eclogite sample from the Franklin Metamorphic Complex in the Tyennan region of central Tasmania have rare earth element signatures showing that eclogite metamorphism occurred at ~ 510 Ma, consistent with island arc–passive margin collision during the Delamerian(− Tyennan) Orogeny. U–Pb ages of detrital zircons have been determined from two samples of Ordovician sandstones in the Lachlan Fold Belt at Melville Point (south coast of New South Wales) and the Howqua River (western Tabberabbera Zone of eastern Victoria). These rocks were chosen because they are the first major clastic influx at the base of the Ordovician ‘Bengal-fan’ scale turbidite pile. The samples show the same prominent peaks as previously found elsewhere (600–500 Ma Pacific-Gondwana and the 1300–1000 Ma Grenville–Gondwana signatures) reflecting supercontinent formation. We highlight the presence of ~ 500 Ma non-rounded, simple zircons indicating clastic input most likely from igneous rocks formed during the Delamerian and Ross Orogenies. We consider that the most probable source of the Ordovician turbidites was in East Antarctica adjacent to the Ross Orogen rather than reflecting long distance transport from the Transgondwanan Supermountain (i.e. East African Orogen). Together with other provenance indicators such as detrital mica ages, this is a confirmation of the Delamerian–Lachlan connection.  相似文献   

4.
In the Cambrian, the paleo-Pacific margin of the East Gondwana continent, including East Antarctica, Australia, Tasmania and New Zealand, was affected by the Ross–Delamerian Orogeny. The evidence from geochemistry of volcanic rocks and petrography of clastic sediments in northern Victoria Land (Antarctica) reveals that orogenesis occurred during a phase of oblique subduction accompanied by the opening and subsequent closure of a back-arc basin. A similar sequence of events is recognized in New Zealand. In both regions Middle Cambrian volcanic rocks are interpreted as arc/back-arc assemblages produced by west-directed subduction; sediments interbedded with the volcanic rocks show provenance both from the arc and from the Gondwana margin and therefore place the basin close to the continent. Rapid back-arc closure in the Late Cambrian was likely accomplished through changes to the subduction system.  相似文献   

5.
Crustal architecture in formerly contiguous basement terranes in SE Australia, Tasmania and northern Victoria Land is a legacy of late Neoproterozoic–Cambrian subduction-related processes, culminating in formation of the Delamerian–Ross orogen. Structures of Delamerian–Ross age were subsequently reactivated during late Mesozoic–Cenozoic Gondwana breakup, strongly influencing the geometry of continental rifting and providing clues about the origins and configuration of the pre-existing basement structures. An ocean–continent transform boundary developed off western Tasmania follows the trace of an older Paleozoic strike-slip structure (Avoca–Sorell fault system) optimally oriented for reactivation during the final separation of Australia from Antarctica. This boundary cuts across rocks preserving an earlier record of arc–continent collision during the course of which continental crust was subducted to mantle depths and Cambrian mafic–ultramafic island arc rocks were thrust westwards over late Neoproterozoic–Cambrian passive margin sequences. Collision was accompanied by development of a foreland basin into which 520–600 Ma arc-derived detrital zircons were shed. Following a reversal in subduction polarity, and change to transcurrent motion along the Gondwana margin, Tasmania migrated northward along the proto-Avoca fault system before entering a subduction zone located along the Heathcote–Governor fault system, precipitating a second collision, south-vergent thrusting, and tectonic reworking of the already accreted Cambrian arc–forearc assemblages and underlying passive margin sequences.  相似文献   

6.
祁连山蛇绿岩带和原特提斯洋演化   总被引:2,自引:1,他引:1  
位于阿拉善地块和柴达木地块之间的祁连造山带记录原特提斯洋扩张、俯冲、闭合、大陆边缘增生和碰撞造山的完整过程。从南向北,祁连造山带发育有三条平行排列、不同类型的蛇绿岩带:(1)南部南祁连洋底高原-洋中脊-弧后蛇绿岩混杂带;(2)中部托勒山洋中脊型蛇绿岩带;(3)北部走廊南山SSZ型蛇绿岩带。南部南祁连蛇绿混杂岩带以拉脊山-永靖蛇绿岩为代表,为典型的洋底高原型蛇绿岩,是大洋板内地幔柱活动的产物,形成年龄为525~500Ma;中部托勒山蛇绿岩带沿熬油沟-玉石沟-冰沟-永登一线分布,为大洋中脊型蛇绿岩,蛇绿岩形成年龄为550~495Ma;北部蛇绿岩带包括弧前和弧后两种类型,弧前蛇绿岩以大岔大阪蛇绿岩为代表,形成时代为517~487Ma,反映初始俯冲/弧前扩张到弧后盆地的过程;弧后蛇绿岩以九个泉-老虎山蛇绿岩为代表,为典型的SSZ型蛇绿岩,是弧后扩张的产物,形成时代为奥陶纪(490~445Ma)。三个蛇绿岩带分别代表了新元古代-早古生代祁连洋演化历史不同环境的产物,对了解秦祁昆构造带原特提斯洋的构造演化过程有重要意义。蛇绿岩及弧火山岩的时空分布特征限定了原特提斯洋的俯冲极性为向北消减俯冲。  相似文献   

7.
The Mount Wright Arc, in the Koonenberry Belt in eastern Australia, is associated with two early to middle Cambrian lithostratigraphic groups developed onto the Late Neoproterozoic volcanic passive margin of East Gondwana. The Gnalta Group includes a calc-alkaline basalt-andesite-dacite suite (Mount Wright Volcanics), interpreted to represent the volcanic component of the arc. Volcaniclastic Gnalta Group rocks now buried in the Bancannia Trough represent the continental back-arc, developed immediately behind the arc in a manner analogous to the modern Taupo Volcanic Zone of New Zealand. East of the Gnalta Group is the Ponto Group, a deep marine sedimentary package that includes tholeiitic lavas (Bittles Tank Volcanics) and felsic tuffs, interpreted as part of a fore-arc sequence. The configuration of these units suggests the Mount Wright Arc developed on continental crust in response to west-dipping subduction along the East Gondwana margin, in contrast with some models for Cambrian convergence on other sections of the Delamerian Orogen, which invoke east-dipping subduction and arc accretion by arc-continent collision.This convergent margin was deformed by the middle Cambrian Delamerian Orogeny, which involved initial co-axial shortening followed by sinistral transpression, and oroclinal folding around the edge of the Curnamona Province.  相似文献   

8.
The Rathjen Gneiss is the oldest and structurally most complex of the granitic intrusives in the southern Adelaide Fold‐Thrust Belt and therefore provides an important constraint on the timing of the Delamerian Orogen. Zircons in the Rathjen Gneiss show a complex growth history, reflecting inheritance, magmatic crystallisation and metamorphism. Both single zircon evaporation (‘Kober’ technique) and SHRIMP analysis yield best estimates of igneous crystallisation of 514 ± 5 Ma, substantially older than other known felsic intrusive ages in the southern Adelaide Fold‐Thrust Belt. This age places an older limit on the start of the Delamerian metamorphism and is compatible with known stratigraphic constraints suggesting the Early Cambrian Kanmantoo Group was deposited, buried and heated in less than 20 million years. High‐U overgrowths on zircons were formed during subsequent metamorphism and yield a 206Pb/238U age of 503 ± 7 Ma. The Delamerian Orogeny lasted no more than 35 million years. The emplacement of the Rathjen Gneiss as a pre‐ or early syntectonic granite is emphasised by its geochemical characteristics, which show affiliations with within‐plate or anorogenic granites. In contrast, younger syntectonic granites in the southern Adelaide Fold‐Thrust Belt have geochemical characteristics more typical of granites in convergent orogens. The Early Ordovician post‐tectonic granites then mark a return to anorogenic compositions. The sensitivity of granite chemistry to changes in tectonic processes is remarkable and clearly reflects changes in the contribution of crust and mantle sources.  相似文献   

9.
New SIMS U-Pb (zircon) data for intrusive rocks of the Macquarie Arc and adjacent granitic batholiths of the Lachlan Orogen (southeastern Australia) provide insight into the magmatic and tectonic evolution of the paleo-Pacific Gondwana margin in the early Paleozoic. These data are augmented by Re-Os dates on molybdenite from four Cu-Au mineralised porphyry systems to place minimum age constraints on igneous crystallization. The simplicity of the zircon age distributions, and absence of older inheritance, stands in contrast to previous geochronological studies. The earliest magmatism within the Macquarie Arc is registered by a ca. 503 Ma gabbro from the Monza igneous complex, whereas a monzodiorite from the same drillhole records the youngest (ca. 432 Ma). Igneous activity in the Macquarie Arc thus overlapped deformation and magmatism in the craton-proximal Delamerian Orogen to the west, and the emplacement of the Lachlan granitic batholiths at 435–430 Ma; the thermal pulse associated with the latter may have triggered the formation of richly mineralised Silurian porphyries in the Macquarie Arc. The juvenile Hf isotope signature of the Monza Gabbro, together with the lack of zircon inheritance and the radiogenic Hf-Nd isotope systematics of Ordovician Macquarie Arc rocks, is consistent with early development of the arc, or a precursor magmatic belt, in an oceanic setting remote from continental influences, and with the arc being built on primitive Cambrian mafic crust. Outboard arc magmatism in the Cambrian may have initiated in response to convergent Delamerian orogenesis adjacent the Gondwana margin. Overlapping radiogenic isotope-time trends are consistent with the evolution of the Macquarie Arc and the Gondwana continental margin being linked from the Cambrian to the Silurian. These data provide further evidence for the growth of continental crust along the southeastern Australian segment of this margin being related to the dynamics of an extensional accretionary orogenic system.  相似文献   

10.
The tectonic setting of the Devonian rocks in the New England Orogen has been the subject of considerable debate and controversy for many years. Our studies reveal that they have formed in intra-oceanic island arc and back arc basin (BAB) settings based on Th/Yb, Nb/Yb, Ba/La and Zr/Y ratios. Further, many of the samples that formed in a BAB have a mixture of MORB and arc-like characteristics, a few are almost entirely MORB-like. The arc-like features are believed to be due to the presence of a subduction component in the basaltic magma, the amount of which is controlled by the distance from the arc. Those samples with MORB-like compositions are thought to have originated at spreading centres. The compositions of Late Devonian basalts become more arc-like to the west suggesting a west facing polarity. Based on the tectonic setting and spatial relationship of Late Devonian sequences, we propose that two subduction zones existed during the Late Devonian, one dipping west beneath the Lachlan Orogen, the other dipping east beneath a rifted intra oceanic arc. Obduction of this intra oceanic arc over the continental margin of the Lachlan Orogen in the latest Devonian at approximately 375 Ma led to the development of a new west dipping subduction zone oceanward and commencement of continental, arc magmatism.  相似文献   

11.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

12.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   

13.
The magnetotelluric (MT) method was used to image the crust and upper mantle beneath the Delamerian and Lachlan orogens in western Victoria, Australia. During the Cambrian time period, this region changed from being the extended passive margin of Proterozoic Australia into an Andean-style convergent margin that progressively began to accrete younger oceanic terranes. Several broadband MT transects, which were collected in stages along coincident deep (full crust imaging) seismic reflection lines, have now been combined to create a continuous 500 km east–west transect over the Delamerian–Lachlan transition region in the Stawell Zone. We present the electrical resistivity structure of the lithosphere using both 3D and 2D inversion methods. Additionally, 1D inversions of long-period AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) MT data on a 55 km regionally spaced grid were used to provide starting constraints for the 3D inversion of the 2D profile. The Delamerian to Lachlan Orogen transition region coincides with the Mortlake Discontinuity, which marks an isotopic discontinuity in Cenozoic basalts, with higher strontium isotope enrichment ratios in the Lachlan Orogen relative to the Delamerian Orogen. Phase tensor ellipses of the MT data reveal a distinct change in electrical resistivity structure near the location of the Mortlake Discontinuity, and results of 3D and 2D inversions along the MT profile image a more conductive lower crust and upper mantle beneath the Lachlan Orogen than the Delamerian Orogen. Increased conductivity is commonly ascribed to mantle enrichment and thus supports the notion that the isotope enrichment of the Cenozoic basalts at least partially reflects an enriched mantle source rather than crustal contamination. Fault slivers of the lower crust from the more conductive Lachlan region expose Cambrian boninites and island arc andesites indicative of subduction, a process that can enrich the mantle isotopically, and also electrically, by introducing carbon (graphite) and water (hydrogen).  相似文献   

14.
In northern Victoria Land (NVL), Antarctica, the palaeopacific margin of Gondwana is made up of the inboard Wilson (WT) and the two outboard Bowers (BT) and Robertson Bay (RBT) terranes. The occurrence of a Cambro-Ordovician magmatic arc in the WT argues for a southwestward subduction leading to the final configuration of this margin during the Ross–Delamerian Orogeny. A U-Pb SHRIMP crystallization age (511.7 ± 2.9 Ma) obtained on the Surgeon Island Granite (SIG), located at the eastern end of the RBT, indicates that the SIG also belongs to the Ross cycle, and provides evidence for multiple subduction zones during the Ross Orogeny. Structural observations show that the SIG and its country rocks are basement to the RBT turbidites. SIG inherited zircon ages indicate the occurrence of Proterozoic crust east of the RBT and constrains the location of the Proterozoic–Palaeozoic boundary in Cambrian Gondwana.  相似文献   

15.
Two types of Neoproterozoic metabasites occur together with regionally intruded arc-related Neoproterozoic granitoids (ca. 850–830 Ma) in the Hongseong area, southwestern Gyeonggi Massif, South Korea, which is the extension of the Dabie–Sulu collision belt in China. The first type of metabasite (the Bibong and Baekdong metabasites) is a MORB-like back-arc basin basalt or gabbro formed at ca. 890–860 Ma. The Bibong and Baekdong metabasites may have formed during back-arc opening by diapiric upwelling of deep asthenospheric mantle which was metasomatized by large ion lithophile element (LILE) enriched melt or fluid derived from the subducted slab and/or subducted sediment beneath the arc axis. The second type of metabasite (the Gwangcheon metabasite) formed in a plume-related intra-continental rift setting at 763.5 ± 18.3 Ma and is geochemically similar to oceanic island basalt (OIB). These data indicate a transition in tectonic setting in the Hongseong area from arc to intra-continental rift between ca. 830 and 760 Ma. This transition is well correlated to the Neoproterozoic transition from arc to intra-continental rift tectonic setting at the margin of the Yangtze Craton and corresponds to the amalgamation and breakup of Rodinia Supercontinent.  相似文献   

16.
宋述光  杨立明 《地球科学》2019,44(12):4167-4172
岛弧的形成和演化对于理解板块构造和大陆生长有重要意义.祁连山-西秦岭一带发育两条不同类型的弧岩浆岩带,其北侧为北祁连增生杂岩带,由蛇绿岩、高压变质岩和大陆型弧岩浆岩带组成,形成时代为520~440 Ma.岩浆岩以中酸性火山岩-侵入岩为主,部分地区发育典型双峰式火山岩.南侧为祁秦增生杂岩带,由寒武纪蛇绿岩(525~490 Ma)和奥陶纪IBM型洋内弧岩浆岩(470~440 Ma)组成,蛇绿岩以拉脊山-永靖洋底高原型蛇绿岩为代表,蛇绿岩的上部熔岩部分由夏威夷型苦橄岩、板内碱性玄武岩和板内拉斑玄武岩组成,为大洋板块内部地幔柱活动产物.洋内弧岩浆岩以高镁玄武岩、玄武安山岩、高铝安山岩、玻安岩为主,局部发育赞岐岩.祁秦增生杂岩带的蛇绿岩和弧火山岩组合很好地说明洋底高原与海沟碰撞和俯冲带阻塞是造成俯冲带起始和新的洋内弧形成和发展主要因素.   相似文献   

17.
《Precambrian Research》2007,152(3-4):93-118
George V Land (Antarctica) includes the boundary between Late Archean–Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross–Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar–39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar–39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ∼1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (∼180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro–Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar–39Ar ages from ∼530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.  相似文献   

18.
Reconstructions of the Cambrian–Silurian tectonic evolution of eastern Gondwanaland, when the Australian Tasmanides and Antarctic Ross Orogen developed, rely on correlation between structural elements in SE Australia and Northern Victoria Land (NVL), Antarctica. A variety of published models exist but none completely solve the tectonic puzzle that is the Delamerian–Lachlan transition in the Tasmanides. This paper summarizes the understanding of Cambrian (Delamerian) to Silurian (Lachlan) geological evolution of the eastern Tasmanides, taking into account new deep seismic data that clarifies the geological connection between Victoria and Tasmania — the ‘Selwyn Block’ model. It evaluates previous attempts at correlation between NVL, Tasmania and Victoria, and presents a new scenario that encompasses the most robust correlations. Tasmania together with the Selwyn Block is reinterpreted as an exotic Proterozoic microcontinental block – ‘VanDieland’ – that collided into the east Gondwanaland margin south of western Victoria, and north of NVL in the Late Cambrian, perhaps terminating the Delamerian Orogeny in SE Australia. Subsequent north-east ‘tectonic escape’ of VanDieland in the Early Ordovician explains the present-day outboard position of Tasmania with respect to the rest of the Delamerian orogen, the origin of the hiatus that separates the Delamerian and Lachlan orogenic cycles in Australia, and how western Lachlan oceanic crust developed as a ‘trapped plate-segment’. The model establishes a new structural template for subsequent Lachlan Orogen development and Mesozoic Australia–Antarctica separation.  相似文献   

19.
Numerous small dismembered ophiolite fragments occur in South Mongolia, but they are very poorly studied. The lack of age data and geochemical analysis hampers our understanding of the Paleozoic tectonic evolution of the region. We conducted detailed studies on the Manlay ophiolitic complex and Huree volcanic rocks south of the Main Mongolian Lineament (MML) to provide some constraints on these rocks. The Manlay ophiolite consists of dunite, harzburgite, pyroxenite, gabbro, plagiogranite, basalt and chert, locally with chromite mineralization in dunite. The gabbro and plagiogranite yielded SHRIMP zircon weighted mean 206Pb/238U ages of 509 ± 5 Ma and 482 ± 4 Ma, respectively. The basalt and dolerite samples of this complex show enrichment in LREE and LILE and negative Nb, Ta and Ti anomalies, and the chrome spinel from the chromitite lens in the dunite is characterized by high Cr# and low TiO2 contents. These features suggest a supra-subduction zone (SSZ) origin for the ophiolitic complex. The Huree volcanic rocks, ranging from basalt to dacite, display enrichment in LREE and LILE, weak Eu anomalies and distinctly negative Nb, Ta and Ti anomalies, consistent with those of typical magmas in a subduction environment. An andesite sample from this arc yielded a SHRIMP 206Pb/238U zircon age of 487 ± 5 Ma, which is the oldest reliable age for an island arc in South Mongolia. Recognition of an Early Paleozoic ophiolitic complex and a coeval island arc indicates that South Mongolia underwent a period of active volcanism during Late Cambrian to Ordovician. Additionally, the tuff overlying the ophiolitic complex and a granite intruding the ophiolite have SHRIMP zircon U–Pb ages of 391 ± 5 Ma and 304 ± 4 Ma, respectively. Combining the available data, we propose that the Early Paleozoic subduction–accretionary complexes likely constitute the basement of the Late-Paleozoic arc formations and correlate with the Lake Zone in western Mongolia.  相似文献   

20.
Abstract

The upper Cambrian Yancannia Formation is a small and isolated basement exposure situated in the southern Thomson Orogen, northwestern New South Wales. Understanding the geology of the Yancannia Formation is important, as it offers a rare glimpse of the composition and structure of the mostly covered basement rocks of the southern Thomson Orogen. It consists of deformed fine-grained, lithic-rich, turbiditic metasediments, suggesting deposition in a proximal, low-energy deep-marine environment. A 497 ± 13 Ma U–Pb detrital zircon date provides its maximum depositional age, the same as previously published for a tuff horizon in a correlative unit. Analysis of sedimentological, geochronological and geophysical data confirms the Yancannia Formation belongs to the Warratta Group. The Warratta Group exhibits many similarities to the Teltawongee Group in the adjacent Delamerian Orogen, including similar provenance, sedimentology and deep-water turbiditic depositional environment. Additionally, there is no sedimentological evidence for deposition of the Warratta Group following the ca 500 Ma Delamerian Orogeny, which suggests that the Warratta Group is syn-Delamerian. However, no geochronological or structural evidence for Delamerian orogenesis was observed in the Warratta Group, suggesting that the group was either unaffected by Delamerian orogenesis, or that no conclusive record remains. The provenance signature of the Warratta Group also bears strong similarities with the upper Cambrian Stawell Zone Saint Arnaud Group in the western Lachlan Orogen. Units east of Yancannia have similar provenance signatures to the Lower Ordovician Girilambone Group of the Lachlan Orogen, suggesting equivalents exist in the southern Thomson Orogen. These are likely to be the Thomson beds, deposited in a deep-marine setting outboard of the Delamerian continental margin. Structural analysis from a ~10 km, semi-continuous, across-strike section indicates a major, kilometre-scale, upright, shallow northwest-trending, doubly plunging anticline dominates the Yancannia region. This D1 structure was associated with tight-to-isoclinal folding, penetrative cleavage and abundant quartz veining of probable Benambran age. Later dextral transpressional deformation (D2) produced a sporadic, weak cleavage and dextral faulting, possibly of Bindian age. Major south-directed thrusting (D3) on the adjacent Olepoloko Fault occurred in the early Carboniferous and appears to pre-date a later deformation event (D4), which was associated with kink folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号