首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U–Pb dating and Lu–Hf isotopes, whole-rock element geochemistry and Sr–Nd–O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U–Pb dating shows that three plutons were emplaced in the Late Jurassic (159–148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3–74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures (T Zr = 707–817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1–12.8‰, most > 9.5‰) and clearly negative ε Nd (T) (? 9.5 to ? 11.8) and ε Hf (T) (in situ zircon) (? 13.1 to ? 13.5). The muscovite-bearing granites have high SiO2 contents (74.7–78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04–1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671–764 °C, most < 745 °C) and also show a general decrease in T Zr with increasing SiO2. The muscovite-bearing granites have high Rb (up to 810 ppm) and high (K2O + Na2O)/CaO (up to 270), Rb/Sr (up to 42) and Rb/Ba (up to 30) as well as low K/Rb (< 150, down to 50), Zr/Hf (< 24, down to 11) and Nb/Ta (< 6, down to 2). They show similar Nd–O–Hf isotopic compositions to the biotite granites with ε Nd (T) of ? 8.7 to ? 12.0, δ18O of 8.7–13.0‰ (most > 9.5‰) and ε Hf (T) (in situ zircon) of ? 11.3 to ? 13.1. Geochemical data suggest the origin of the biotite granites and muscovite-bearing granites as follows: Partial melting of Precambrian metasedimentary rocks (mainly two-mica schist) in the lower crust at temperatures of ca. 820 °C generated the melts of the less felsic biotite granites. Such primary crustal melts underwent biotite-dominant fractionation crystallization, forming the felsic biotite granites. Progressive plagioclase-dominant fractionation crystallization from the evolved biotite granites produced the more felsic muscovite-bearing granites. Thus, the biotite granites belong to the S-type whereas the muscovite-bearing granites are highly fractionated S-type granites. We further suggest that during the formation of the muscovite-bearing granites the fractional crystallization was accompanied by fluid fractionation and most likely the addition of internally derived mineralizing fluids. That is why the large-scale polymetallic mineralization is closely related to the muscovite-bearing granites rather than biotite granites in SE China. This is important to further understand the source and origin of biotite granites and muscovite-bearing granites in SE China even worldwide.  相似文献   

2.
The Tongshankou Cu–Mo deposit, located in the westernmost Daye district of the Late Mesozoic Metallogenic Belt along the Middle-Lower reaches of the Yangtze River, eastern China, consists mainly of porphyry and skarn ores hosted in the Tongshankou granodiorite and along the contact with the Lower Triassic marine carbonates, respectively. Sensitive high-resolution ion microprobe zircon U–Pb dating constrains the crystallization of the granodiorite at 140.6 ± 2.4 Ma (1σ). Six molybdenite samples from the porphyry ores yield Re–Os isochron age of 143.8 ± 2.6 Ma (2σ), while a phlogopite sample from the skarn ores yields an 40Ar/39Ar plateau age of 143.0 ± 0.3 Ma and an isochron age of 143.8 ± 0.8 Ma (2σ), indicating an earliest Cretaceous mineralization event. The Tongshankou granodiorite has geochemical features resembling slab-derived adakites, such as high Sr (740–1,300 ppm) and enrichment in light rare earth elements (REE), low Sc (<10 ppm), Y (<13.3 ppm), and depletion in heavy REE (<1.2 ppm Yb), and resultant high Sr/Y (60–92) and La/Yb (26–75) ratios. However, they differ from typical subduction-related adakites by high K, low MgO and Mg#, and radiogenic Sr–Nd–Hf isotopic compositions, with (87Sr/86Sr) t  = 0.7062–0.7067, ɛ Nd(t) = −4.37 to −4.63, (176Hf/177Hf) t  = 0.282469–0.282590, and ɛ Hf(t) = −3.3 to −7.6. The geochemical and isotopic data, coupled with geological analysis, indicate that the Tongshankou granodiorite was most likely generated by partial melting of enriched lithospheric mantle that was previously metasomitized by slab melts related to an ancient subduction system. Magmas derived from such a source could have acquired a high oxidation state, as indicated by the assemblage of quartz–magnetite–titanite–amphibole–Mg-rich biotite in the Tongshankou granodiorite and the compositions of magmatic biotite that fall in the field between the NiNiO and magnetite–hematite buffers in the Fe3+–Fe2+–Mg diagram. Sulfur would have been present as sulfates in such highly oxidized magmas, so that chalcophile elements Cu and Mo were retained as incompatible elements in the melt, contributing to subsequent mineralization. A compilation of existing data reveals that porphyry and porphyry-related Cu–Fe–Au–Mo mineralization from Daye and other districts of the Metallogenic Belt along the Middle-Lower reaches of the Yangtze River took place coevally in the Early Cretaceous and was related to an intracontinental extensional environment, distinctly different from the arc-compressive setting of the Cenozoic age that has been responsible for the emplacement of most porphyry Cu deposits of the Pacific Rim.  相似文献   

3.
《International Geology Review》2012,54(14):1786-1800
Geochronology, geochemistry, and whole-rock Sr–Nd–Pb isotopes were studied on a suite of Mesozoic adamellites from eastern China to characterize their ages and petrogenesis. Sensitive high-resolution ion microprobe U–Pb zircon analyses were done, yielding consistent ages of 123.2 ± 1.8 to 122.1 ± 2.1 Ma for the samples. These rocks belong to the alkaline magma series in terms of K2O + Na2O contents (8.45–9.58 wt.%) and to the shoshonitic series based on their high K2O contents (5.23–5.79 wt.%). The adamellites are further characterized by high light rare earth element contents [(La/Yb)N = 14.96–45.99]; negative Eu anomalies (δEu = 0.46–0.75); positive anomalies in Rb, Th, Pb, and U; and negative anomalies in Sr, Ba, and high field-strength elements (i.e. Nb, Ta, P, and Ti). In addition, all of the adamellites in this study display relatively low radiogenic Sr [(87Sr/86Sr)i = 0.7081–0.7089] and negative ?Nd(t) values from –16.70 to –17.80. These results suggest that the adamellites were derived from low-degree partial melting of an enriched lithospheric mantle below the North China Craton (NCC). The parent magmas likely experienced fractional crystallization of potassium feldspar, plagioclase and Fe–Ti oxides (e.g. rutile, ilmenite, and titanite), apatite, and zircon during the ascent of alkaline rocks without crustal contamination.  相似文献   

4.
5.
Neoproterozoic igneous rocks are widely distributed in the Kuluketage block along the northern margin of the Tarim Craton. However, the published literature mainly focuses on the ca. 800 Ma adakitic granitoids in the area, with the granites that intrude the 735–760 Ma mafic–ultramafic rocks poorly studied. Here we report the ages, petrography and geochemistry of two granites in the Xingdi mafic–ultramafic rocks, in order to construct a new view of the non-adakitic younger granites. LA-ICP-MS zircon U–Pb dating provided weighted mean 206Pb/238U ages of 743.0 ± 2.5 Ma for the No.I granite (G1) and 739.0 ± 3.5 Ma for the No.II granite (G2). A clear core-rim texture of similar age and a high zircon saturation temperature of ca. 849 ± 14 °C were observed for the No.I granite; in contrast, G2 has no apparent core-rim texture but rather inherited older zircons and a lower zircon saturation temperature of ca. 763 ± 17 °C. Geochemical analysis revealed that G1 is an alkaline A-type granite and G2 is a high-K calc-alkaline I-type granite. Both granites share similar geochemical characteristics of arc-related magmatic rocks and enriched Sr–Nd–Hf isotopes, likely due to their enriched sources or mixing with enriched magma. Whereas G1 and its host mafic rocks form typical bimodal intrusions of the same age and similar Sr–Nd–Hf isotope compositions, G2 is younger than its host mafic rocks and its Sr–Nd–Hf isotope composition indicates a lower crust origin. Although they exhibit arc-related geochemical features, the two granites likely formed in a rift setting, as inferred from thier petrology, Sr–Nd–Hf isotopes and regional tectonic evolution.  相似文献   

6.
7.
The Qinling–Dabie–Sulu orogenic belt is the junction between the North and South China blocks, which resulted from the final amalgamation of China continents during the Indosinian. Indosinian granitoids are widespread in the Qinling orogen, and their geneses can thus constrain the evolution of China continent. We carried out a combined U–Pb zircon dating and geochemical study for the Shuangpengxi granodiorite pluton and the Xiekeng diorite–granodiorite pluton in the middle part of the West Qinling orogen. U–Pb zircon dating shows that the magma crystallization ages of 242 ± 3 Ma for the Shuangpengxi pluton and ~244–242 Ma for the Xiekeng pluton. Geochemical and Sr–Nd–Hf isotopic compositions reveal that the magma of the Shuangpengxi granodiorite was derived from partial melting of crustal materials. The Xiekeng diorites can be divided into high-Al diorite and high-Mg diorite. Both of them resulted from partial melting of enriched lithospheric mantle, but their mantle source had been modified by previous slab-derived melt. The high-Al diorite was formed by fractional crystallization of olivine, pyroxene and/or preferential accumulation of plagioclase, and the high-Mg diorite was formed by fractional crystallization of olivine and/or preferential accumulation of pyroxene. The Xiekeng granodioritic porphyry was formed by mixing of crust-derived and mantle-derived melts. We propose that the Early Indosinian magmatism resulted from break-off of subducted oceanic slab after collision. The slab break-off model can well explain the linear distribution of the Early Indosinian plutons and rapid crustal uplift during the Middle Triassic in the West Qinling.  相似文献   

8.
ABSTRACT

This contribution presents new SIMS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf–O isotope systematic on an example of Late Carboniferous granodiorite and porphyritic granodiorite intrusions from the Chihu area of Eastern Tianshan, Xinjiang. SIMS zircon U–Pb dating indicates that the Chihu granodiorite and porphyritic granodiorite formed at 320.2 ± 2.4 Ma and 314.5 ± 2.5 Ma, respectively. These rocks are metaluminous to weakly peraluminous with an A/CNK value of 0.92–1.58, as well as low 10000 Ga/Al, Zr + Nb + Y + Ce, and Fe2O3T/MgO values, which suggest an I-type normal island arc magmatic suite. The porphyritic granodiorite has a slightly higher Sr/Y ratio (28–37) and lower Y (6.9–11.7 ppm) and Yb (0.98–1.49 ppm) contents, suggesting mild adakite affinities. In situ Hf–O isotopic analyses using LA-ICP-MS-MC and SIMS indicate that the εHf(t) and δ18O values of granodiorite zircons vary from +11.5 to +14.9 and 4.80 to 5.85 ‰, respectively, similar to values for porphyritic granodiorite zircons, which vary from +11.9 to +17.2 and 3.78 to 4.71 ‰, respectively. The geochemical and isotopic data imply that the Chihu granodiorite and porphyritic granodiorite share a common origin, most likely derived from partial melts of the subduction-modified mantle. Based on the regional geological history, geochemistry of the Chihu intrusions, and new isotopic studies, we suggest that the Late Carboniferous magma was generated during the period of the northward subduction of the Palaeo-Tianshan ocean plate beneath the Dananhu–Tousuquan island arc.  相似文献   

9.
International Journal of Earth Sciences - This study presents new whole-rock elemental and isotopic data for the basalts from the Zhaotong area, located in the intermediate zone of the...  相似文献   

10.
The Maoduan Pb–Zn–Mo deposit is in hydrothermal veins with a pyrrhotite stage followed by a molybdenite and base metal stage. The Re–Os model ages of five molybdenite samples range from 138.6 ± 2.0 to 140.0 ± 1.9 Ma. Their isochron age is 137.7 ± 2.7 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the nearby exposed Linggen granite porphyry gave a 206Pb/238U age of 152.2 ± 2.2 Ma and the hidden Maoduan monzogranite yielded a mean of 140.0 ± 1.6 Ma. These results suggest that the intrusion of the Maoduan monzogranite and Pb–Zn–Mo mineralization are contemporaneous. δ 34S values of sulfide minerals range from 3.4‰ to 4.8‰, similar to magmatic sulfur. Four sulfide samples have 206Pb/204Pb = 18.252–18.432, 207Pb/204Pb = 15.609–15.779, and 208Pb/204Pb = 38.640–39.431, similar to the age-corrected data of the Maoduan monzogranite. These isotope data support a genetic relationship between the Pb–Zn–Mo mineralization and the Maoduan monzogranite and probably indicate a common deep source. The Maoduan monzogranite has geochemical features similar to highly fractionated I-type granites, such as high SiO2 (73.7–75.2 wt.%) and alkalis (K2O + Na2O = 7.8–8.9 wt.%) and low FeOt (0.8–1.3 wt.%), MgO (~0.3 wt.%), P2O5 (~0.03 wt.%), and TiO2 (~0.2 wt.%). The granitic rocks are enriched in Rb, Th, and U but depleted in Ba, Sr, Nb, Ta, P, and Ti. REE patterns are characterized by marked negative Eu anomalies (Eu/Eu* = 0.2–0.4). The Maoduan monzogranite, having (87Sr/86Sr) t  = 0.7169 to 0.7170 and εNd(t) = −13.8 to −13.7, was probably derived from mixing of partial melts from enriched mantle and the Paleoproterozoic Badu group in an extensional tectonic setting.  相似文献   

11.
Five major felsic igneous suites from northern Vietnam, with ages from mid-Proterozoic to early Cenozoic, were studied. Representative granitic rocks from the Posen Complex (mid-Proterozoic) and the Dienbien Complex (late Permian to early Triassic) show geochemical characteristics similar to those of calc-alkaline to high-K calc-alkaline I-type granites. However, the former, located in the South China block, has significantly higher initial Nd isotopic ratios [εNd(T)=+0.7 to +1.5] and older Nd isotopic model ages (TDM∼1.7 Ga) than the latter [εNd(T)=−4.7 to −9.7; TDM∼1.3–1.5 Ga] which were emplaced south of the Song Ma Suture and thus in the Indochina block. The generation of both complexes may be attributed to subduction-related processes that occurred in two distinct crustal provenances with different degrees of mantle inputs. On the other hand, Jurassic to Cretaceous granitic rocks from the Phusaphin Complex, contemporaneous rhyolites from the Tule Basin, and late Paleogene granitic rocks from the Yeyensun Complex, all exposed in the South China block between the Ailao Shan–Red River shear zone and the Song Ma Suture, display geochemical features similar to those of A-type granites with intermediate εNd(T) values (+0.6 to −2.8) and younger TDM ages (0.6–1.1 Ga). These magmas are suggested to have been generated as a consequence of intraplate extension in the western part of the South China block (Yunnan), and to have been transported to their present position by mid-Tertiary continental extrusion along the Ailao Shan–Red River shear zone related to the India–Asia collision. Overall, the isotopic and model age data, reported in this study indicate that in northern Vietnam, the most important crust formation episode took place in the Proterozoic. Likewise, repeated mantle inputs have played a role in the petrogenesis of Phanerozoic granitic rocks.  相似文献   

12.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

13.
U–Pb dating and Hf isotopic analyses of zircons from various granitoids, combined with major and trace element analyses, were undertaken to determine the petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli–Erguna area of Inner Mongolia, China. The Neoproterozoic granitoids are mainly biotite monzogranites with zircon U–Pb ages of 894 ± 13 Ma and 880 ± 10 Ma, and they are characterised by enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, K) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Ti) and heavy rare earth elements (HREEs). The Late Devonian granitoids are dominantly syenogranites and mylonitised syenogranites with zircon U–Pb ages of 360 ± 4 Ma, and they form a bimodal magmatic association with subordinate gabbroic rocks of the same age. The Late Devonian syenogranites have A-type characteristics including high total alkalis, Zr, Nb, Ce and Y contents, and high FeOt/MgO, Ga/Al and Rb/Sr ratios. The Carboniferous granitoids are mainly tonalites, granodiorites and monzogranites with U–Pb ages varying from 319 to 306 Ma, and they show very strong adakitic characteristics such as high La/Yb and Sr/Y ratios but low Y and Yb contents. The Late Permian granitoids are dominated by monzogranites and syenogranites with zircon U–Pb ages ranging between 257 and 251 Ma. Isotopically, the εHf(t) values of the Neoproterozoic granitoids range from +4.3 to +8.3, and the two-stage model ages (TDM2) from 1.2 to 1.5 Ga. The Late Devonian granitoids are less radiogenic [εHf(t) from +12.0 to +12.8 and TDM2 from 545 to 598 Ma] than the Carboniferous [εHf(t) from +6.8 to +9.5 and TDM2 from 722 to 894 Ma] and Late Permian granitoids [εHf(t) from +6.1 to +9.4 and TDM2 in the range of 680–895 Ma]. These data indicate (1) the Neoproterozoic granitoids may have been generated by melting of a juvenile crust extracted from the mantle during the Mesoproterozoic, probably during or following the final stages of assembly of Rodinia as a result of the collision and amalgamation of Australia and the Tarim Craton; (2) the Late Devonian granitoids may have formed by partial melting of a new mantle-derived juvenile crust in a post-orogenic extensional setting; (3) the Carboniferous granitoids appear to have been produced by melting of garnet-bearing amphibolites within a thickened continental crust during and following the collision of the Songnen and Erguna–Xing’an terranes; and (4) the Late Permian granitoids may have been generated by melting of garnet-free amphibolites within the Neoproterozoic juvenile continental crust, probably in the post-collisional tectonic setting that followed the collision of the North China and Siberian cratons.  相似文献   

14.
Based on geological data and the geochemical and isotopic (Sr, Nd) parameters of the Devonian volcanic associations of the Minusa basin, the main regularities of volcanism development are considered, the composition of magmatic sources is studied, and the geodynamic mechanisms of their involvement in rifting are reconstructed. The early stage of formation of the Minusa basin was characterized by intense volcanism, which resulted in differentiated and, more seldom, bimodal volcanic complexes composed of pyroclastic rocks and dolerite sills. At the late stage, only terrigenous deposits accumulated in the basin. It has been established that the basites are similar in composition and are intermediate in geochemical characteristics between intraplate rocks (OIB) and continent-marginal ones (IAB). The basites, like OIB, have high contents of all lithophile elements, which is typical of enriched mantle sources, and, like IAB, show negative anomalies of Nb, Ta, Ti, and, to a smaller extent, Rb, Th, Zr, and Hf, selective enrichment in Pb and Ba (and, sometimes, Sr), and a weak REE differentiation (7 < (La/Yb)N < 17). In contrast to the basins in other segments of the Devonian Altai–Sayan rift area, the igneous associations in the Minusa basin are characterized by a worse expressed geochemical inhomogeneity of rocks and lack of high-Ti (> 2 wt.% TiO2) basites. The Sr and Nd isotope compositions of the Minusa basites deviate from the mantle rock series toward the compositions with high radiogenic-strontium and low REE contents.This points to the melting of a mantle substratum (PREMA-type) and carbonate-rich sedimentary rocks, which were probably assimilated by basaltic magma. The correlations between the contents of trace incompatible elements in rocks with SiO2 = 53–77 wt.% testify to the assimilation of crustal substrata by parental basaltic melts and the subsequent differentiation of contaminated magmas (AFC model). We propose a model for the formation of primary melts with the simultaneous participation of magmatic sources of two types: plume and fluid-saturated suprasubductional, localized beneath the active continental margin.  相似文献   

15.
《International Geology Review》2012,54(14):1732-1753
Large-scale volcanism in the late Mesozoic was a prominent geological event in southeast China. The late Mesozoic volcanic sequences, named the Moshishan Group, are exposed in Zhejiang Province and are predominantly felsic in composition with subordinate mafic magma and rare andesites. To understand the late Mesozoic tectonic evolution of southeast China, we present zircon U–Pb dating, major and trace element analyses, and Hf isotopic compositions from felsic volcanic rocks of the Moshishan Group. Zircon U–Pb dating shows that the Moshishan Group formed between 145 and 129 Ma. The εHf(t) of the analysed zircons ranges from ?16.58 to +6.89, and the TDM2 age ranges from 753 to 2238 Ma with a major peak at ca. 1870 Ma. Hf isotopic compositions of zircons in Early Cretaceous volcanic rocks are more radiogenic than that of the metamorphic basement rocks, indicating a juvenile component in these magmas. Major element concentrations show that the volcanic rocks mainly belong to the high-K calc-alkaline series. Both zircon saturation temperatures and the εHf(t) values of zircons gradually increased with the evolution of the magma. Trace element data indicates that neither magmatic differentiation of mantle-derived magma nor mixing of magmas from different sources were the predominant magmagenetic processes. Earlier studies suggest that contemporaneous underplating contributed to the heat source that induced crustal melting and to the material origin that inconsistently mixed with the local crustal melts. Magmatic underplating is likely to have occurred because of the southwestward subduction of the Pacific plate with episodic slab rollback. The data obtained in this study suggest that the crust–mantle interaction under the influence of slab rollback played a progressive role in the formation of Early Cretaceous felsic volcanic rocks in southeast China.  相似文献   

16.
Many Late Paleozoic Cu–Au–Mo deposits occur in the Central Asian Orogenic Belt (CAOB). However, their tectonic settings and associated geodynamic processes have been disputed. This study provides age, petrologic and geochemical data for andesites and granitic porphyries of the Taerbieke gold deposit from the Tulasu Basin, in the northwestern Tianshan Orogenic Belt (western China). LA-ICP-MS zircon U–Pb dating indicates that the granitic porphyries have an Early Carboniferous crystallization age (349 ± 2 Ma) that is broadly contemporaneous with the eruption age (347 ± 2 Ma) of the andesites. The andesites have a restricted range of SiO2 (58.94–63.85 wt.%) contents, but relatively high Al2O3 (15.39–16.65 wt.%) and MgO (2.51–6.59 wt.%) contents, coupled with high Mg# (57–69) values. Geochemically, they are comparable to Cenozoic sanukites in the Setouchi Volcanic Belt, SW Japan. Compared with the andesites, the granitic porphyries have relatively high SiO2 (72.68–75.32 wt.%) contents, but lower Al2O3 (12.94–13.84 wt.%) and MgO (0.10–0.33 wt.%) contents, coupled with lower Mg# (9–21) values. The andesites and granitic porphyries are enriched in both large ion lithophile and light rare earth elements, but depleted in high field strength elements, similar to those of typical arc magmatic rocks. They also have similar Nd–Hf–Pb isotope compositions: εNd(t) (+0.48 to +4.06 and −0.27 to +2.97) and zircons εHf(t) (+3.4 to +8.0 and −1.7 to +8.2) values and high (206Pb/204Pb)i (18.066–18.158 and 17.998–18.055). We suggest that the Taerbieke high-Mg andesitic magmas were generated by the interaction between mantle wedge peridotites and subducted oceanic sediment-derived melts with minor basaltic oceanic crust-derived melts, and that the magmas then fractionated to produce the more felsic members (i.e., the Taerbieke granitic porphyries) during late-stage evolution. Taking into account the Carboniferous magmatic record from the western Tianshan Orogenic Belt, we suggest that the formation of the Early Carboniferous andesites and granitic porphyries in the Taerbieke area were related to the Paleo-Junggar Oceanic plate southward subduction under the Yili–Central Tianshan plate. The close association of the Early Carboniferous magmatic rocks and Au mineralization in the Taerbieke area suggests that the arc magmatic rocks in the Tulasu basin may have a high potential for Au mineralization.  相似文献   

17.
The Willyama Supergroup of the Broken Hill region in southern Australia consists of supracrustal sedimentary and magmatic rocks, formed between 1810 and 1600 Ma. A statistical analysis of nearly 2000 SHRIMP U–Pb zircon spot ages, compiled from published and unpublished sources, provides evidence for three distinct tectonostratigraphic successions and four magmatic events during this interval. Succession 1 includes Redan Geophysical Zone gneisses and the lower part of the Thackaringa Group (Cues Formation). These rocks were deposited after 1810 Ma and host granite sills of the first magmatic event (1710–1700 Ma). Succession 2 includes the upper Thackaringa Group (Himalaya Formation), the Broken Hill Group and the Sundown Group and was deposited between 1710 and 1660 Ma. These rocks all contain detrital zircons from the first magmatic event (1710–1700 Ma) and in some cases from the second magmatic event (1690–1680 Ma). The second magmatic event (1690–1680 Ma) was bimodal, resulted from crustal extension, and was coeval with deposition of the Broken Hill Group and deepening of the basin. With this event a mafic sill swarm focused in the Broken Hill Domain. Mafic sills lack any trace of inheritance, unlike the granitoids that commonly contain inherited zircons typical of the supracrustal sediments. Succession 3, the Paragon Group and equivalents were deposited after 1660 Ma, but before a regional metamorphic event at 1600 Ma. Metamorphism was closely followed by inversion of the succession into a fold‐and‐thrust belt, accompanied by a fourth late to post‐orogenic magmatic event (ca 1580 Ma) characterised by granite intrusion and regional acid volcanism (the local equivalents of the Gawler Range Volcanics in South Australia).  相似文献   

18.
ABSTRACT

This study presents new whole-rock major and trace element geochemistry, zircon U–Pb ages, and Hf-isotope compositions for volcanic rocks from the Manketouebo Formation of the central Great Xing’an Range, NE China. These data provide precise ages and information on the petrogenesis and source of the magmas that formed this formation, furthering our understanding of the geodynamic setting of the large-scale late Mesozoic magmatism in the Great Xing’an Range and other areas in NE China. The Manketouebo Formation in the study area is dominated by rhyolites and rhyolitic tuffs with minor trachydacites. The LA-ICP-MS zircon U–Pb dating indicates that these volcanic rocks formed between 143 and 139 Ma. The volcanic rocks contain high silica (66.70–79.91 wt.%) and total alkali (5.93–9.72 wt.%) concentrations, and low concentrations of MgO (0.08–1.15 wt.%), total FeO (0.68–4.50 wt.%), and CaO (0.10–2.56 wt.%). They are enriched in large-ion lithophile elements (LILEs; e.g. Rb, Th, and U) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs; e.g. Nb, Ta, Ti, and P) and heavy rare earth elements (HREEs), indicating that they are similar to highly fractionated I-type igneous rocks. All of the magmatic zircons from the analysed samples have high initial 176Hf/177Hf ratios (0.282900–0.283093), positive εHf(t) values (7.48–14.19), and young Hf two-stage model ages (954–344 Ma) that suggest the primary magma that formed the volcanic rocks of the Manketouebo Formation was derived from the partial melting of Neoproterozoic to Phanerozoic juvenile crustal material, indicating in turn that significant crustal growth occurred at this time within the Xing’an Terrane. These data, combined with previous research into the spatial–temporal distribution of Mesozoic volcanic rocks in NE China, suggest that the Early Cretaceous magmatism in the Great Xing’an Range was influenced by both the subduction of the Palaeo-Pacific Plate and the closure of the Mongol–Okhotsk Ocean. This was a crucial period in the transformation from the Mongol–Okhotsk Ocean to the Palaeo-Pacific tectonic regimes. In summary, the early stages of Early Cretaceous magmatism in this area were related to the closure of the Mongol–Okhotsk Ocean, whereas the later stages of magmatism in this area and elsewhere in NE China were related to the subduction of the Palaeo-Pacific Plate.  相似文献   

19.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

20.
TPost-orogenic intrusive complexes from the Sulu belt of eastern China consist of pyroxene monzonites and dioritic porphyrites. We report new U–Pb zircon ages, geochemical data, and Sr–Nd–Pb isotopic data for these rocks. Laser ablation-inductively coupled plasma-mass spectrometry U–Pb zircon analyses yielded a weighted mean 206Pb/238U age of 127.4 ± 1.2 Ma for dioritic porphyrites, consistent with crystallization ages (126 Ma) of the associated pyroxene monzonites. The intrusive complexes are characterized by enrichment in light rare earth elements and large ion lithophile elements (i.e. Rb, Ba, Pb, and Th) and depletion in heavy rare earth elements and high field strength elements (i.e. Nb, Ta, P, and Ti), high (87Sr/86Sr)i ranging from 0.7083 to 0.7093, low ?Nd(t) values from ?14.6 to ? 19.2, 206Pb/204Pb = 16.65–17.18, 207Pb/204Pb = 15.33–15.54, and 208Pb/204Pb = 36.83–38.29. Results suggest that these intermediate plutons were derived from different sources. The primary magma-derived pyroxene monzonites resulted from partial melting of enriched mantle hybridized by melts of foundered lower crustal eclogitic materials before magma generation. In contrast, the parental magma of the dioritic porphyrites was derived from partial melting of mafic lower crust beneath the Wulian region induced by the underplating of basaltic magmas. The intrusive complexes may have been generated by subsequent fractionation of clinopyroxene, potassium feldspar, plagioclase, biotite, hornblende, ilmenite, and rutile. Neither was affected by crustal contamination. Combined with previous studies, these findings provide evidence that a Neoproterozoic batholith lies beneath the Wulian region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号