首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Phase-resolved medium-resolution VLT spectroscopy of the low-mass X-ray binary GX 9+9 has revealed narrow C  iii emission lines that move in phase relative to our new estimate of the ephemeris, and show a velocity amplitude of 230 ± 35 km s−1. We identify the origin of these lines as coming from the surface of the donor star, thereby providing the first estimate of the mass function of   f ( M 1) ≥ 0.22 M  . Rotational broadening estimates together with assumptions for the mass donor give  0.07 ≤ q ≤ 0.35  and  182 ≤ K 2≤ 406 km s−1  . Despite a low-mass ratio, there is no evidence for a superhump in our data set. Doppler maps of GX 9+9 show the presence of a stream overflow, either in the form of material flowing downward along the accretion disc rim or in a similar fashion as occurs in high mass transfer rate cataclysmic variables known as the SW Sex stars. Finally, we note that the Bowen region in GX 9+9 is dominated by C  iii instead of N  iii emission as has been the case for most other X-ray binaries.  相似文献   

2.
We report BeppoSAX and optical observations of the black hole candidate GX 339–4 during its X-ray 'off' state in 1999. The broad-band (0.8–50 keV) X-ray emission can be fitted by a single power law with spectral index, α ∼1.6. The observed luminosity is 6.6×1033 erg s−1 in the 0.5–10 keV band, which is at the higher end of the flux distribution of black hole soft X-ray transients in quiescence, comparable to that seen in GS 2023+338 and 4U 1630–47. An optical observation just before the BeppoSAX observation shows the source to be very faint at these wavelengths as well ( B =20.1, V =19.2). By comparing with previously reported 'off' and low states (LS), we conclude that the 'off' state is actually an extension of the LS, i.e. an LS at lower intensities. We propose that accretion models such as the advection-dominated accretion flows are able to explain the observed properties in such a state.  相似文献   

3.
We report the discovery of a periodic modulation in the optical lightcurve of the candidate ultracompact X-ray binary 4U 1822−000. Using time-resolved optical photometry taken with the William Herschel Telescope we find evidence for a sinusoidal modulation with a semi-amplitude of 8 per cent and a period of 191 min, which is most likely close to the true orbital period of the binary. Using the van Paradijs & McClintock relation for the absolute magnitude and the distance modulus allowing for interstellar reddening, we estimate the distance to 4U 1822−000 to be 6.3 kpc. The long orbital period casts severe doubts on the ultracompact nature of 4U 1822−000.  相似文献   

4.
We present timing and spectral analysis of RXTE -PCA (Proportional Counter Array) observations of the accretion powered pulsar 4U 1907+09 between 2007 June and 2008 August. 4U 1907+09 had been in a spin-down episode with a spin-down rate of  −3.54 × 10−14 Hz s−1  before 1999. From RXTE observations after 2001 March, the source showed a ∼60 per cent decrease in spin-down magnitude, and INTEGRAL observations after 2003 March showed that source started to spin-up. We found that the source recently entered into a new spin-down episode with a spin-down rate of  −3.59 × 10−14 Hz s−1  . This spin-down rate is pretty close to the previous long-term spin-down rate of the source measured before 1999. From the spectral analysis, we showed that hydrogen column density varies with the orbital phase.  相似文献   

5.
We have fitted ∼200 RXTE and INTEGRAL spectra of the neutron star (NS) low-mass X-ray binary (LMXB) GX 9+9 from 2002 to 2007 with a model consisting of a disc blackbody and another blackbody representing the spreading layer (SL), i.e. an extended accretion zone on the NS surface as opposed to the more traditional disc-like boundary layer. Contrary to theory, the SL temperature was seen to increase towards low SL luminosities, while the approximate angular extent had a nearly linear luminosity dependency. Comptonization was not required to adequately fit these spectra. Together with the ∼ 70° upper bound of inclination implied by the lack of eclipses, the best-fitting normalization of the accretion disc blackbody component implies a distance of ∼10 kpc, instead of the usually quoted 5 kpc.  相似文献   

6.
7.
8.
9.
We report on several pointed Rossi X-ray Timing Explorer observations of the enigmatic low-mass X-ray binary (LMXB) 4U 1957+11 at different X-ray luminosities. The luminosity of the source varied by more than a factor of 4 on time-scales of months to years. The spectrum of the source tends to become harder when its luminosity increases. Only very weak  (1–2  per cent rms amplitude,  0.001–10 Hz  ,  2–60 keV)  rapid X-ray variability was observed during the observations. A comparison of the spectral and temporal behaviour of 4U 1957+11 with other X-ray binary systems, in particular LMC X-3, indicates that 4U 1957+11 is likely to be a persistent LMXB harbouring a black hole and it is persistently in the black hole high state. If confirmed, it would be the only such system known.  相似文献   

10.
UW CrB (MS 1603+2600) is a peculiar short-period X-ray binary that exhibits extraordinary optical behaviour. The shape of the optical light curve of the system changes drastically from night to night, without any changes in overall brightness. Here we report X-ray observations of UW CrB obtained with XMM–Newton . We find evidence for several X-ray bursts, confirming a neutron star primary. This considerably strengthens the case that UW CrB is an accretion disc corona system located at a distance of at least 5–7 kpc (3–5 kpc above the Galactic plane). The X-ray and Optical Monitor (ultraviolet–optical) light curves show remarkable shape variation from one observing run to another, which we suggest are due to large-scale variations in the accretion disc shape resulting from a warp that periodically obscures the optical and soft X-ray emission. This is also supported by the changes in phase-resolved X-ray spectra.  相似文献   

11.
We present the results of a systematic investigation of spectral evolution in the Z source GX 349+2, using data obtained during 1998 with the Proportional Counter Array (PCA) on-board the RXTE satellite. The source traced a extended normal branch (NB) and flaring branch (FB) in the colour–colour diagram (CD) and the hardness-intensity diagram (HID) during these observations. The spectra at different positions of the Z-track were best fitted by a model consisting of a disc blackbody and a Comptonized spectrum. A broad (Gaussian) iron line at ∼6.7 keV is also required to improve the fit. The spectral parameters showed a systematic and significant variation with the position along the Z-track. The evolution in spectral parameters is discussed in view of the increasing mass accretion rate scenario, proposed to explain the motion of Z sources in the CD and the HID.  相似文献   

12.
The transient black-hole binary XTE J1118+480 exhibited dramatic rapid variability at all wavelengths which were suitably observed during its 2000 April–July outburst. We examine time-resolved X-ray, ultraviolet, optical and infrared data spanning the plateau phase of the outburst. We find that both X-ray and infrared bands show large amplitude variability. The ultraviolet and optical variability is more subdued, but clearly correlated with that seen in the X-rays. The ultraviolet, at least, appears to be dominated by the continuum, although the lines are also variable. Using the X-ray variations as a reference point, we find that the ultraviolet (UV) variability at long wavelengths occurs later than that at short wavelengths. Uncertainty in the Hubble Space Telescope timing prohibits a determination of the absolute lag with respect to the X-rays, however. The transfer function is clearly not a delta-function, exhibiting significant repeatable structure. For the main signal we can rule out an origin in reprocessing on the companion star – the lack of variation in the lags is not consistent with this, given a relatively high orbital inclination. Weak reprocessing from the disc and/or companion star may be present, but is not required, and another component must dominate the variability. This could be variable synchrotron emission correlated with X-ray variability, consistent with our earlier interpretation of the infrared (IR) flux as due to synchrotron emission rather than thermal disc emission. In fact, the broad-band energy distribution of the variability from IR to X-rays is consistent with expectations of optically thin synchrotron emission. We also follow the evolution of the low-frequency quasi-periodic oscillation in X-rays, UV, and optical. Its properties at all wavelengths are similar, indicating a common origin.  相似文献   

13.
We have monitored the atoll-type neutron star low-mass X-ray binary 4U 1636−53 with the Rossi X-ray Timing Explorer ( RXTE ) for more than 1.5 yr. Our campaign consisted of short (∼2 ks) pointings separated by 2 d, regularly monitoring the spectral and timing properties of the source. During the campaign we observed a clear long-term oscillation with a period of ∼30–40 d, already seen in the light curves from the RXTE All-Sky Monitor, which corresponded to regular transitions between the hard (island) and soft (banana) states. We detected kilohertz (kHz) quasi-periodic oscillations (QPOs) in about a third of the observations, most of which were in the soft (banana) state. The distribution of the frequencies of the peak identified as the lower kHz QPO is found to be different from that previously observed in an independent data set. This suggests that the kHz QPOs in the system shows no intrinsically preferred frequency.  相似文献   

14.
We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I X-ray burst) from the surface of an accreting neutron star in a binary system. The X-ray binary nature is further confirmed by the report of a detection of a faint point source at the position of the XRT counterpart of the burst in archival XMM–Newton data approximately six year before the burst and in more recent XMM–Newton data obtained at the end of 2006 September (nearly four months after the burst). Since the source is very likely not a gamma-ray burst, we rename the source Swift J1749.4−2807, based on the Swift /BAT discovery coordinates. Using the BAT data of the type I X-ray burst, we determined that the source is at most at a distance of  6.7 ± 1.3 kpc  . For a transiently accreting X-ray binary, its soft X-ray behaviour is atypical: its 2–10 keV X-ray luminosity (as measured using the Swift /XRT data) decreased by nearly three orders of magnitude in about 1 day, much faster than what is usually seen for X-ray transients. If the earlier phases of the outburst also evolved this rapidly, then many similar systems might remain undiscovered because the X-rays are difficult to detect and the type I X-ray bursts might be missed by all the sky surveying instruments. This source might be part of a class of very fast transient low-mass X-ray binary systems of which there may be a significant population in our Galaxy.  相似文献   

15.
16.
17.
We present the results of the analysis of Rossi X-ray Timing Explorer ( RXTE ) observations of the new X-ray transient, SWIFT J1753.5−0127, during its outburst in 2005 July. The source was caught at the peak of the burst with a flux of 7.19e-09 erg s−1cm−2 in the 3–25 keV energy range and observed until it decreased by about a factor of 10. The photon index of the power-law component, which is dominant during the entire outburst, decreases from ∼1.76 to 1.6. However, towards the end of the observations the photon index is found to increase, indicating a softening of the spectra. The presence of an ultrasoft thermal component, during the bright phases of the burst, is clear from the fits to the data. The temperature associated with this thermal component is 0.4 keV. We believe that this thermal component could be due to the presence of an accretion disc. Assuming a distance of 8.5 kpc,   L X/ L Edd≃ 0.05  at the peak of the burst, for a black hole of mass  10 M  . The source is found to be locked in the low/hard state during the entire outburst and likely falls in the category of the X-ray transients that are observed in the low/hard state throughout the outburst. We discuss the physical scenario of the low/hard state outburst for this source.  相似文献   

18.
19.
Long-term monitoring of the recently discovered X-ray transient, IGR J17098−3628, by the All-Sky Monitor on-board the Rossi X-Ray Timing Explorer , has shown that it displays a long-term (≈163 d) quasi-periodic modulation in the data spanning its 'active' state (i.e. approximately MJD 53450–54200). Furthermore, this light curve is not typical of 'classical' soft X-ray transients, in that J17098−3628 has remained active since its initial discovery, and may be more akin to the pseudo-transient EXO 0748−676, which is now classified as a persistent low-mass X-ray binary (LMXB). However, EXO 0748−676 recently entered a more active phase (since approximately MJD 53050), and since then we find that it too displays a quasi-periodic modulation (≈181 d) in its light curve. This must be a 'superorbital' modulation, as the orbital period of EXO 0748−676 is well established (3.8 h), and hence we interpret both objects' long periods as representing some intrinsic properties of the accretion disc (such as coupled precessional and warping effects). By analogy, we therefore suggest that IGR J17098−3628 is another member of this class of pseudo-transient LMXBs and is likely to have a <1 d orbital period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号