首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The high-speed particle flux (solar wind) escaping from the Sun controls the geomagnetic activity at middle latitudes. The latter is found to be negatively correlated to the difference of atmospheric pressure between January and April averaged out in the area of the Northern Adriatic. This difference is again related to the water volume flowing from the South into the Northern Adriatic Sea and is a necessary (though not sufficient) condition for the occurrence of strong algal-blooms in summer. A physical model involving geomagnetic activity, mean atmospheric pressured difference between latitude 35 °N and 55 °N in the European area and atmospheric pressure difference from winter to spring in the Northern Adriatic basin is proposed. The possibility of predicting the long-term variations of geomagnetic activity allows one to obtain long-term predictions of winter minus spring pressure and therefore indications of the risk of strong summer-time algal-bloom episodes. Received March 29, 1996 Revised February 14, 1997  相似文献   

2.
Based on a two-dimensional energy balance model, the studies on some climatic issues such as the re- lationship between ice cap latitude and solar constant, desertifieation, and the warming effect of carbon dioxide, have been reviewed and discussed. The phenomenon that a fixed solar constant might correspond to different equilibrium ice cap latitudes is determined by the continuity of albedo distribution. The disconti- nuity in albedo distribution increases the number of equilibrium ice cap latitudes. Desert would expand both northward and southward when desert surface albedo is increasing. This would deteriorate the ecological environment in border regions, and then threaten the existence of local inhabitants. Melting of the polar ice would not be accelerated, with increasing carbon dioxide concentration. The ice cap latitude would move northward slowly, with some “hiatus” periods, under the slowly increasing global average surface tempera- ture. According to the current research, future development of the two-dimensional energy balance model and possible progress are also forecasted.  相似文献   

3.
1977年1月是北半球中纬大陆地区近年来最严寒的一个月。利用500 mb逐日资料,进行了天气学和能量学的研究,所得结果如下: (1)这个月极区经常出现高压,而且阿拉斯加高压脊特别强而稳定。由于极区高压,高纬西风动量大量地往中纬输送,造成高纬强东风。 (2)对于这个月月平均基本气流,进行正压不稳定度判据的检定,发现存在接近正压不稳定的条件。同时,有供给涡动发展的能量。 (3)这个月涡动中,最活跃的是n=3波,寒潮爆发主要是同3波盛行期相联系。3波之所以异常活跃,是由于从2波接受异常多的能量。 (4)2波输出能量较往年多一倍以上,主要输送给3波,对3波发展起着重要作用。 对这些结果进行了物理上的联系和讨论。  相似文献   

4.
Climate model simulations available from the PMIP1, PMIP2 and CMIP (IPCC-AR4) intercomparison projects for past and future climate change simulations are examined in terms of polar temperature changes in comparison to global temperature changes and with respect to pre-industrial reference simulations. For the mid-Holocene (MH, 6,000 years ago), the models are forced by changes in the Earth’s orbital parameters. The MH PMIP1 atmosphere-only simulations conducted with sea surface temperatures fixed to modern conditions show no MH consistent response for the poles, whereas the new PMIP2 coupled atmosphere–ocean climate models systematically simulate a significant MH warming both for Greenland (but smaller than ice-core based estimates) and Antarctica (consistent with the range of ice-core based range). In both PMIP1 and PMIP2, the MH annual mean changes in global temperature are negligible, consistent with the MH orbital forcing. The simulated last glacial maximum (LGM, 21,000 years ago) to pre-industrial change in global mean temperature ranges between 3 and 7°C in PMIP1 and PMIP2 model runs, similar to the range of temperature change expected from a quadrupling of atmospheric CO2 concentrations in the CMIP simulations. Both LGM and future climate simulations are associated with a polar amplification of climate change. The range of glacial polar amplification in Greenland is strongly dependent on the ice sheet elevation changes prescribed to the climate models. All PMIP2 simulations systematically underestimate the reconstructed glacial–interglacial Greenland temperature change, while some of the simulations do capture the reconstructed glacial–interglacial Antarctic temperature change. Uncertainties in the prescribed central ice cap elevation cannot account for the temperature change underestimation by climate models. The variety of climate model sensitivities enables the exploration of the relative changes in polar temperature with respect to changes in global temperatures. Simulated changes of polar temperatures are strongly related to changes in simulated global temperatures for both future and LGM climates, confirming that ice-core-based reconstructions provide quantitative insights on global climate changes. An erratum to this article can be found at  相似文献   

5.
This work uses an energy balance climate model (EBCM) with explicit infrared radiative transfer, parametrized tropospheric temperature and humidity profiles, and separate stratosphere, troposphere, and surface energy balances, to investigate claims that a downward redistribution of tropospheric water vapor in response to surface warming could serve as a strong negative feedback on climatic change. A series of sensitivity tests is carried out using: (1) a variety of relationships between total precipitable water in the troposphere and temperature; (2) feedbacks between surface temperature and the vertical distribution of tropospheric water vapor at low latitudes; and (3) feedback between surface temperature or meridional temperature gradient and lapse rate. Fixed relative humidity (RH) enhances the global mean surface temperature response to a CO2 doubling by only 50% compared to fixed absolute humidity, giving a response of 1.8 K. When water vapor is assumed to be redistributed downward between 30°S–30°N such that a 1 K surface warming reduces total precipitable water above 600 hPa by 10%, the global mean surface air temperature response is reduced to 1.2 K. Assuming a stronger downward redistribution in relation to surface temperature change has a rapidly diminishing marginal effect on global mean and tropical surface temperature response, while slightly increasing the warming at high latitudes due to the parametrized dependence of middle-to-high latitude lapse rate on the meridional temperature gradient. A modest downward water vapor redistribution, such that absolute humidity in the upper troposphere at subtropical latitudes is constant as total precipitable water increases, can reduce the tropical temperature sensitivity to less than 1 K, while increasing the equator-to-pole amplification of the surface air temperature response from a factor of about three to a factor of four. However, it is concluded that whatever changes in future GCM response might occur as a result of new parametrizations of subgrid-scale processes, they are exceedingly unlikely to produce a climate sensitivity to a CO2 doubling of less than 1 K even if there is a strong downward shift in the water vapor distribution as climate warms. Received: 23 February 1998 / Accepted: 1 November 1999  相似文献   

6.
This study aims to understand the mechanisms which cause an overall reduction of SH extratropical cyclone activity with a slight increase in the high latitudes in a warmer climate simulated in general circulation models (GCMs) with increasing CO2. For this purpose, we conducted idealized model experiments by forcing warm temperature anomalies to the areas where climate change models exhibit local maximum warming—the tropics in the upper troposphere and the polar regions in the lower troposphere—simultaneously and separately. The Melbourne University atmospheric GCM (R21) coupled with prescribed SST was utilized for the experiments. Our results demonstrate that the reduction of SH extratropical cyclone frequency and depth in the midlatitudes but the slight increase in the high latitudes suggested in climate change models result essentially from the tropical upper tropospheric warming. With this tropical warming, the enhanced static stability which decreases baroclinicity in the low and midlatitudes turns out to be a major contributor to the decrease of cyclone activity equatorward of 45°S whereas the increased meridional temperature gradient in the high latitudes seems an important mechanism for the increase of cyclone activity over 50°–60°S.  相似文献   

7.
Based on 1999-2000 observations made by the first Arctic and sixteenth Antactic scientific voyages,a study is undertaken about the meridional surface UV-B (B band ultraviolet rays) variations in 75°N-70°S.It is mitigated as a function of latitudes and marked by lower radiation averaged over the Northern Hemisphere (NH) than over the Southern Hemisphere (SH),with its daily course basically similar to that of total radiation.Around polar summer noon hours (localtime) and where ice albedo is maximum,the strongest UV-B irradiance on the surface perpendicular to sun's beams as found at equatorial latitudes is measured sometimes.In the areas near Zhongshan Station the increase of surface UV-B radiation shows a close relation to the decrease of ozone in the higher atmosphere but it has a less intimate relation with its concentration at ground.  相似文献   

8.
Summary The importance of horizontal and vertical advection of temperature for the Antarctic major stratospheric warming in September 2002 has been investigated, by applying the thermodynamic energy equation to ECMWF temperature and wind data. The analysis, which is carried out for the one-week period 19–26 September, shows that the large temperature increase in this period in the polar stratosphere is mainly due to horizontal advection of temperature. In addition, it has been investigated to what extent the observed temperature increase, as well as the change in the zonal wind, can be simulated with a simple conceptual model of a moving polar vortex. The model consists of a horizontal, circular vortex whose centre moves with constant meridional velocity off from the South Pole. The temperature and zonal wind fields are prescribed, stationary and zonally symmetric (relative to the vortex centre). Despite its simplicity, the model simulates several important aspects of the observations, such as the zonal-mean temperature increase and zonal-mean zonal wind reversal poleward of 60° S, and the zonal-mean temperature decrease at middle latitudes.  相似文献   

9.
Evaluating trends over time (nonparametric Mann–Kendall test) for 18 water chemical variables from 79 reference lakes, distributed all over Sweden, during spring since 1984 showed most significant trends for atmospheric deposition driven sulfate (SO4) concentrations. The decrease in SO4 concentrations was on average 2.7 times higher at lower (56°N to 59°N) than at higher latitudes (60°N to 68°N). This large difference in the rate of change between lower and higher latitudes could not solely be explained by atmospheric deposition as the rates of change in SO4 wet deposition differed by a factor of only 1.5 between lower and higher latitudes. Significantly higher rates of change at lower than at higher latitudes are known from the timing of lake ice breakup, a typical climate change indicator. The rates of change in the timing of lake ice breakup differed by a factor of 2.3 between lower and higher latitudes. Other water chemical variables showing significantly higher rates of change at lower than at higher latitudes were water color (a factor of 3.5), calcium (a factor of 2.9), magnesium (a factor of 5.5) and conductivity (a factor of 5.9). The rates of change of all these variables were strongly related to the rates of change in the timing of lake ice breakup along a latitudinal gradient (R 2 = 0.41–0.78, p < 0.05), suggesting that climatic changes can accelerate atmospheric driven changes at especially lower latitudes. This acceleration will result in more heterogeneous lake ecosystems along a latitudinal gradient.  相似文献   

10.
近十五年全球臭氧变化   总被引:16,自引:1,他引:15  
利用卫星观测臭氧总含量TOMS(第7版)资料,在剔除季节变化后对全球60°S-60°N范围首先进行了沿纬度分布的线性趋势和周期分析。结果表明:自本世纪70年代末,各纬带上的臭氧总量都呈下降趋势,强度随纬度升高而加剧,并发现总体上北半球臭氧的下降趋势较南半球更加明显;同时证实了准两年振荡是臭氧变化中除年周期外最显著的周期。并对臭氧变化中的准两年振荡作了遥相关分析;发现准两年振荡在强度和位相上基本呈纬向分布并主要表现出赤道对称的特征。135~170°E地区臭氧总量变化所表现出的不同于其它地区的原因可能是这一地区常年频繁出现的对流活动;而臭氧总量下降趋势表现出的北半球同纬度地区均大于南半球的南北半球差异可能是由两半球人类活动的差异引起  相似文献   

11.
Polar amplification in a coupled climate model with locked albedo   总被引:1,自引:0,他引:1  
In recent years, a substantial reduction of the sea ice in the Arctic has been observed. At the same time, the near-surface air in this region is warming at a rate almost twice as large as the global average—this phenomenon is known as the Arctic amplification. The role of the ice-albedo feedback for the Arctic amplification is still a matter of debate. Here the effect of the surface-albedo feedback (SAF) was studied using a coupled climate model CCSM3 from the National Center for Atmospheric Research. Experiments, where the SAF was suppressed by locking the surface albedo in the entire coupled model system, were conducted. The results reveal polar temperature amplification when this model, with suppressed albedo, is forced by a doubling of the atmospheric CO2 content. Comparisons with variable albedo experiments show that SAF amplifies the surface-temperature response in the Arctic area by about 33%, whereas the corresponding value for the global-mean surface temperature is about 15%. Even though SAF is an important process underlying excessive warming at high latitudes, the Arctic amplification is only 15% larger in the variable than in the locked-albedo experiments. It is found that an increase of water vapour and total cloud cover lead to a greenhouse effect, which is larger in the Arctic than at lower latitudes. This is expected to explain a part of the Arctic surface–air-temperature amplification.  相似文献   

12.
基于574台站的逐日降水资料及NCEP/NCAR逐日再分析资料,在比较2010年梅雨期前后(6月7—11日和18—22日)我国东部两次强降水过程的大尺度环流型差异的基础上,从Rossby波活动通量及热带对流活动探讨了这两次强降水过程的异同。结果表明,相同之处在于:两次强降水过程期间中高纬度地区都存在Rossby波向下游传播,中纬度地区呈现双阻型式,低纬度地区西太平洋副热带高压(以下简称西太副高)强度偏强、西伸脊点位置偏西。不同之处在于:1)第一次降水过程中Rossby波的波源位于北欧地区附近,贝加尔湖地区为低槽,使得冷空气南下到36°N左右;同时孟加拉湾活跃的对流系统使西太副高加强西伸到95°E左右,冷暖空气交汇,导致强降水发生;2)第二次降水过程中Rossby波的波源位于北欧地区和中西伯利亚地区附近,东亚地区的低槽较第一次过程明显加深,有利于冷空气到达长江中下游地区(30°N左右),西太平洋暖池地区活跃的对流系统使得西太副高加强西伸到90°E左右,冷暖空气在长江中下游及其以南地区交汇,导致强降水发生。  相似文献   

13.
夏季长江淮河流域异常降水事件环流差异及机理研究   总被引:5,自引:5,他引:5  
张庆云  郭恒 《大气科学》2014,38(4):656-669
长江、淮河同处东亚中纬度,天气过程的大尺度环流背景相似,大量相关研究基本是把江淮流域天气气候事件作为一个整体研究,然而对长江、淮河流域夏季降水的时空变化进行分析发现,长江、淮河流域夏季异常降水事件有各自不同的年际、年代际变化特征,但环流差异及成因并不十分清楚。本文根据中国台站降水资料及NCEP/NCAR再分析资料,利用物理量诊断和现代统计学等方法,重点分析长江、淮河流域梅雨期降水异常事件发生时南北半球大气环流内部动力过程的差异及成因。研究指出:长江(淮河)流域梅雨期降水异常偏多年500 hPa位势高度场亚洲中高纬度环流呈现为南北向(东西向)的波列与东亚中高纬鄂霍茨克海阻塞频次增多(减少)以及200 hPa高度场上东亚副热带高空西风急流强度加强(减弱)、稳定(移动)有关;长江(淮河)流域梅雨期降水异常偏多年主要水汽来源与南半球澳大利亚高压、马斯克林高压位置偏东(西)造成西太平洋150°E~180°(阿拉伯海50°E~60°E)地区越赤道气流加强有关。长江(淮河)流域梅雨期异常降水事件大气环流内部动力过程最显著的差异表现为:东亚副热带高空西风急流加强(减弱)以及南半球澳大利亚高压、马斯克林高压位置偏东(西)。  相似文献   

14.
欧亚北部2004年以来频繁冷冬的特征分析及机理初探   总被引:2,自引:0,他引:2  
利用1961—2013年NCEP/NCAR发布的月平均全球再分析资料,分析了欧亚北部(40°65°N,50°-120°E)2004年以来频繁冷冬的异常特征及形成机理。结果表明:欧亚北部2004年以来冷冬频繁发生,但温度异常的空间分布,尤其中心冷区的位置有显著差异,主要表现为全区偏冷型(2005、2009、2010、2012年)和南部偏冷型(2004、2007、2011年)。全区偏冷年主要由北极涛动(AO)显著负位相所致,对应海表温度特征为北大西洋高、中、低纬度成东北-西南走向的"+、-、+"带状分布,该分布有利于北极涛动/北大西洋涛动(AO/NAO)负位相维持和增强;南部偏冷年大气内部活动异常为乌拉尔-贝加尔湖阻塞高压偏强,北极涛动/北大西洋涛动以弱正位相为主,对应主要海表温度特征为北大西洋中部偏高,其次则为太平洋年代际振荡(PDO)负位相下"类拉尼娜事件",上述海表温度异常均可促进类似欧亚遥相关的罗斯贝波列形成,有利于乌拉尔贝加尔湖阻塞高压偏强、亚洲中部多低槽活动。2004年以来欧亚北部两种类型冷冬的大气环流与海表温度均表现出与历史典型年相类似的特征。  相似文献   

15.
中国地区太阳总輻射的空間分布特征   总被引:38,自引:1,他引:38  
本文評述了以前計算太阳总輻射的各类經驗公式。根据我国26个日射站(1957年7月到1960年底)的实測资料,按B.H.烏克拉英采夫方法确定了我国緯度20°—50°地区每2.5°緯距晴天状况下月总輻射的緯度平均值和月总輻射的計算公式.根据我們的公式計算了136个地点的年、月总輻射值.利用上述实測的和計算的资料繪制了中国地区年、月总輻射值分布图,并对年和月的总輻射空間分布特征进行了討論。  相似文献   

16.
A typical active–break cycle of the Asian summer monsoon is taken as beginning with maximum SST (pentad 0) over the north Bay of Bengal when the oceans to its west and east from longitude 40°–160°E, and between latitudes 10° and 25°N (area A) also has maximum SST. During this pentad the recently found “Cold Pool” of the Bay of Bengal (between latitudes 3°N and 10°N) has its minimum SST. An area of convection takes genesis over the Bay of Bengal immediately after pentad 0 in the zone of large SST gradient north of the Cold Pool and it pulls the monsoon Low Level Jetstream (LLJ) through peninsular India. Convection and the LLJ westerlies then spread to the western Pacific Ocean during pentads 1–4 taken as the active phase of the monsoon during which convection and LLJ have grown in a positive feed back process. The cyclonic vorticity to the north of the LLJ axis is hypothesized to act as a flywheel maintaining the convection during the long active phase against the dissipating effect of atmospheric stabilization by each short spell of deep convection. By the end of pentad 4 the SST over area A has cooled and the convection weakens there, when the LLJ turns clockwise over the Arabian Sea and flows close to the equator in the Indian ocean. A band of convection develops at pentad 5 between the equator and latitude 10°S over the Indian ocean and it is nourished by the cyclonic vorticity of the LLJ now near the equator and the moisture supply through it. This is taken as the break monsoon phase lasting for about three to four pentads beginning from pentad 5 of a composite active–break cycle of 40 day duration. With reduced wind and convection over the area A during the break phase, solar radiation and light winds make the SST there warm rapidly and a new active–break cycle begins. SST, convection, LLJ and the net heat flux at the ocean surface have important roles in this new way of looking at the active–break cycle as a coupled ocean–atmosphere phenomenon.  相似文献   

17.
 The stability of the thermohaline circulation is investigated using an ocean general circulation model coupled to a simple atmospheric model. The atmospheric model is so developed that it represents the wind stress and the freshwater flux more realistically than existing energy balance models. The coupled model can reproduce the realistic deep ocean circulation without any flux adjustment. Effects of the wind stress and the vertical diffusion on the thermohaline circulation are studied by conducting various experiments with the coupled model. The Ekman upwelling between 60N and 90N brings up salt to the sea surface, while the compensation flow of the Ekman transport and the wind-driven gyre circulation between 30N and 60N carry salt horizontally to the high latitudes. By carrying out experiments where the wind stress is completely or partly removed, it is demonstrated that either of the vertical or the horizontal salt transport prevents the halocline formation at high latitudes and maintains the thermohaline circulation. For an experiment in which the vertical diffusivity is enhanced at high latitudes, it is shown that the vertical diffusion at high latitudes also prevents the halocline formation and stabilizes the thermohaline circulation. It is also shown that the value of the vertical diffusivity at high latitude affects the existence of the multiple equilibria of the thermohaline circulation. Received: 26 April 2000 / Accepted: 10 January 2001  相似文献   

18.
 A tree-ring chronology network recently developed from the subantarctic forests provides an opportunity to study long-term climatic variability at higher latitudes in the Southern Hemisphere. Fifty long (1911–1985), homogeneous records of monthly mean sea-level pressure (MSLP) from the southern latitudes (15–65 °S) were intercorrelated on a seasonal basis to establish the most consistent, long-term Trans-Polar teleconnections during this century. Variations in summer MSLP between the South America-Antarctic Peninsula and the New Zealand sectors of the Southern Ocean are significantly correlated in a negative sense (r=−0.53, P<0.001). Climatically sensitive chronologies from Tierra del Fuego (54–55°) and New Zealand (39–47°) were used to develop verifiable reconstructions of summer (November to February) MSLP for both sectors of the Southern Ocean. These reconstructions, which explain between 37 and 43% of the instrumentally recorded pressure variance, indicate that inverse trends in MSLP from diametrically opposite sides of Antarctica have prevailed during the past two centuries. However, the strength of this relationship varies over time. Differences in normalized MSLP between the New Zealand and the South America-Antarctic Peninsula sectors were used to develop a Summer Trans-Polar Index (STPI), which represents an index of sea-level pressure wavenumber one in the Southern Hemisphere higher latitudes. Tree-ring based reconstructions of STPI show significant differences in large-scale atmospheric circulation between the nineteenth and the twentieth centuries. Predominantly-negative STPI values during the nineteenth century are consistent with more cyclonic activity and lower summer temperatures in the New Zealand sector during the 1800s. In contrast, cyclonic activity appears to have been stronger in the mid-twentieth than previously for the South American sector of the Southern Ocean. Recent variations in MSLP in both regions are seen as part of the long-term dynamics of the atmosphere connecting opposite sides of Antarctica. A detailed analysis of the MSLP and STPI reconstructions in the time and frequency domains indicates that much of the interannual variability is principally confined to frequency bands with a period around 3.3–3.6 y. Cross spectral analysis between the STPI reconstruction and the Southern Oscillation Index suggests that teleconnections between the tropical ocean and extra-tropical MSLP variations may be influencing climate fluctuations at southern latitudes. Received: 18 December 1996/Accepted: 10 January 1997  相似文献   

19.
朱福康 《气象学报》1964,34(1):31-40
本文对北半球多年月平均500毫巴图上60°N和30°N纬圈的高度和纬圈平均的经向运动动能进行了波谱分析,探讨了前3个波幅和位相角的季节变化,以及在高低纬度之间的差异。主要结果如下:1位势场的高度主要贡献,集中在准静止长波范围内,并具有明显的季节变化。2波数为1的波在高低纬度性质有显著的不同,其分界线大约在50°-60°N之间。此外,准静止的长波愈向低纬度去逐渐有向西偏移的现象。例如,在30°N上准静止的长波比60°N上要偏西(1/4)-(1/2)波长。360°N纬圈平均的经向运动动能主要部分亦集中在准静止长波范围内。虽然峰值有明显的季节变化,但最大的极值都出现在波数n=2-4之间。30°N纬圈平均的经向运动动能谱有着明显的季节变化,大致可分成如下3个类型:(1)冬季型:纬圈平均的经向运动动能谱存在着两个极值,最大的极值稳定于准静止长波范围内(n=3附近),次极植位于移动性行星波范围内(n=5-8)。(2)夏季型:纬圈平均的经向运动动能谱只有一个极值,稳定于波数为6-7的波内。(3)过渡型:纬圈平均的经向运动动能谱分布较平坦,没有稳定的极值存在。  相似文献   

20.
中间层顶区域大气平均风场年和半年振荡的全球结构   总被引:1,自引:0,他引:1  
利用2003~2011年TIDI(TIMED Doppler Interferometer)风场观测数据研究了中间层顶区域80~105 km纬向平均风场年振荡和半年振荡振幅和相位的全球分布结构,并给出了它们的年际变化。在热带地区,纬向风半年振荡最显著。振幅峰值中心位于南半球10°S~20°S范围,出现与平流层半年振荡类似的相对于赤道不对称的分布,并且振幅峰值与以前在该区域的研究结果存在较大差别。在中高纬度地区,纬向风和经向风被年振荡所控制。纬向风在高度100 km以下中高纬度都存在振幅大值中心;经向风年振荡只出现在两半球中纬度高度95 km以下,并且南北半球振幅峰值中心分布不一致。分析结果还显示年振荡和半年振荡振幅存在显著地年际变化,相位的年际变化则较小,但北半球热带地区经向风年振荡振幅和相位表现出2年周期的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号