首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
The Hyuganada region, a forearc region of Southwest Japan, is characterized by several interesting geological and geophysical features, i.e., significant aseismic crustal uplift of 120 m during the past 120 thousand years at the Miyazaki Plain, negative free-air gravity anomalies with the maximum magnitude of −130 mgal, and relatively less cohesive interplate coupling compared with that for off the Shikoku and Kii Peninsula. In order to examine the causes of these observations, we determined a detailed three-dimensional seismic velocity structure based on the seismic data observed by ocean bottom seismometers (OBS) and land stations. P- and S-wave tomographic velocity structures clearly indicate the subducting slab and also the zones of high Poisson's ratio at 25–35 km depth along the coastline of the northeastern part of the Hyuganada. The region with high Poisson's ratio may correspond to the serpentinized mantle wedge as suggested for other mantle wedges, and appears to be coincident with the zone for observed aseismic slips such as the slow-slip and after-slip events. Also, the detection may be related to a relatively weak interplate coupling in the Hyuganada region. The tomographic structures also indicate low velocity zones with a horizontal scale comparable to the Kyushu-Palau Ridge in and around the subducting slab. If we assume that the low velocity zones correspond to the subducted Kyushu-Palau Ridge, then the predicted gravity anomaly due to the density contrast between the low velocity zones and the surrounding region can explain about 60% of the gravity anomaly in the Hyuganada region. The buoyancy is probably an important factor for the crustal uplift observed in the Miyazaki Plain, the steep bending of the subducting slab and the normal fault-type earthquakes around the Hyuganada region.  相似文献   

2.
As high‐rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind‐induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load‐resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind‐induced and earthquake‐induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full‐scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Theory of the coupling of stress-pore pressure in the saturated, elastic porous media is used in the study of the formation mechanism of the Xinfengjiang reservoir-induced earthquakes. Based on the results, it is believed that compared with the mechanism of additional stress in the vicinity of the reservoir, the mechanism of the coupling of additional stress and pore pressure may be more well-founded for the occurrence of reservoir-induced earthquakes.  相似文献   

4.
The western Hellenic arc has been commonly considered as a largely aseismic subduction zone, from the comparison of a small rate of shortening derived from the seismic moment release, with a large rate of convergence inferred from geology. Complete seismic coupling would instead be expected from models that consider a control by plate tectonic forces, because of the trenchward velocity of the Hellenic–Aegean upper plate now confirmed with GPS measurements. In the region of the Ionian Islands, a subduction interplate boundary has been recently imaged and its seismogenic downdip width suggested to be moderate, from reflection seismic profiling and local earthquake tomography. In the appropriate model for such an earthquake source region, which considers a single interplate fault and takes into account these features, the moderate seismic moment release is found consistent with complete seismic coupling of this subduction. The shallow downdip limit of the seismogenic zone can be interpreted as due to the interplate boundary being overlain there by the ductile deeper crust of the orogenically thickened Hellenides.  相似文献   

5.
Predictive models for estimating strong-motion duration in sites characterized by soft-soil profiles are presented in this paper. The models were developed using a strong-motion database that includes observations from subduction interface earthquakes that occurred from 1989 to 2020 and recorded in Mexico City, which is located at source-to-site distances up to 600 km. A linear mixed-effects regression model, which is a statistical fitting procedure that allows to consider the correlation structure of grouped data, was used to develop the predictive models. Relative significant duration was selected to measure strong-motion duration. This measure can be directly associated with the accumulation of energy of the ground movement. The proposed predictive models relate relative significant duration with moment magnitude, either hypocentral distance or closest distance to the rupture plane, and dominant period of the soil. Regression analyses were performed grouping the ground-motion data by both seismic event and site class. Model assumptions, such as homoscedasticity, normality, and linearity of effects, were verified from residual analyses. From the results, the expected value of the natural logarithm of relative significant duration was found to be ~1.2 times greater for an earthquake with a moment magnitude equal to 8.0 than for one of 6.0. An insightful discussion about the sources and character of the uncertainties detected in the proposed predictive models is also presented in this study. The predictive models proposed in this paper are of valuable application in seismic and structural engineering because they allow to circumscribe properly the dimension and randomness of strong-motion duration.  相似文献   

6.

为了研究中强震对震源区应力场的影响,本研究以盈江地区2008—2014年间发生的5次中强震为例,深入研究这5次中强震对盈江地区地壳应力场的时空影响.为了探究中强震对应力场的时空影响,我们对盈江地区地壳应力场进行了以下研究:根据5次中强震发生时间,分时段反演应力场以考察应力场在时间上是否存在变化;根据震源机制解的空间分布,将研究区分为南部和北部反演应力场,以确定应力场是否存在空间差异;随机抽取震源机制解反演应力场以便确定应力场是否存在时空差异.研究结果表明:(1) 5次中强震对盈江地区应力场产生的扰动较小,没有引起盈江地区应力场在时间上的显著变化;(2) 在研究时段内,盈江地区地壳应力场在时空上可以视为均匀应力场;(3) 盈江地区的地壳应力场为走滑型,最大主应力轴呈NNE-SSW向,最小主应力轴呈SEE-NWW向,最大和最小主应力轴倾角近水平,中间主应力轴倾角近直立.

  相似文献   

7.
We present a study of the lateral structure and mode of deformation in the transition between the Kuril and Honshu subduction zones. We begin by examining the source characteristics of the January 19, 1969, intermediate depth earthquake north of Hokkaido in the framework of slab-tearing, which for the December 6, 1978 event has been well documented by previous studies. We use a least-squares body wave inversion technique, and find that its focal mechanism is comparable to the 1978 event. To understand the cause of these earthquakes, which in the case of the 1978 event occurred on a vertical tear fault but does not represent hinge faulting, we examine the available International Seismological Centre [ISC] hypocenters and Harvard centroid-moment tensor [CMT] solutions to determine the state of stress, and lateral structure and segmentation in the Kuril and northern Honshu slabs. These data are evaluated in the framework of two models. Model (A) requires the subducting slab at the Hokkaido corner to maintain surface area. Model (B) requires slab subduction to be dominated by gravity, with material subducting in the down-dip direction. The distribution of ICS hypocenters shows a gap in deep seismicity down-dip of the Hokkaido corner, supporting model (B). From the CMT data set we find that three types of earthquake focal mechanisms occur. The first (type A) represents dip-slip mechanisms consistent with down-dip tension or compression in the slab in a direction normal to the strike of the trench. These events occur throughout the Honshu and Kuril slabs with focal mechanisms beneath Hokkaido showing NNW plungingP andT axes consistent with the local slab geometry. The second (type B) occurs primarily at depths over 300 km in the southern part of the Kuril slab with a few events in the northern end of the Honshu deep seismicity. These earthquakes have focal mechanisms with P axes oriented roughly E-W, highly oblique to the direction of compression found in the type A events, with which they are spatially interspersed. The third (type C) group of earthquakes are those events which do not fit in either of the first two groups and consist of either strike-slip focal mechanisms, such as the tearing events, or oddly oriented focal mechanisms. Examination of the stress axes orientations for these three types reveals that the compressional axes of the type C events are consistent with those of type B. The slab tearing events are just differential motion reflecting the E-W compressive states of stress which is responsible for the type B family of events. There is no need to invoke down-dip extension which does not fit the slab geometry. We conclude that these two states of stress can be explained as follows: 1) The type A events and the seismicity distribution support model (B). 2) The type B and C events upport model (A). The solution is that the slab subducts according to model (B), but the flow in the mantle maintains a different trajectory, possibly induced by the plate motions, which produces the second state of E-W compressive stress.  相似文献   

8.
青藏高原东北缘地震时空迁移的有限元数值模拟   总被引:6,自引:2,他引:4       下载免费PDF全文
孙云强  罗纲 《地球物理学报》2018,61(6):2246-2264

地震在大陆内部断层系统中的时空迁移和丛集的基本力学机制一直是地球科学家关注的重要问题.青藏高原东北缘地震活动频繁,其地震时空迁移和地震丛集现象显著,是研究这个问题的重要区域.我们建立了一个三维黏弹塑性有限元模型,模拟了青藏高原东北缘主要活动断层系统的地震循环和地震时空迁移;计算了断层系统的应力演化;并探讨了断层之间的相互作用及地震时空迁移和地震丛集的原因.模拟结果显示断层之间的相互作用通过增加或降低断层上的库仑应力,加速或延缓了地震发生,使得区域地震可以在短时间内集中发生,从而形成地震丛集;另外,区域经过多个地震循环的长期演化,一些孕震断层上的应力状态恰好都达到屈服的临界状态附近,从而也可以导致这些断层上的地震在短期内集中发生,因此产生地震丛集和地震迁移.我们发现当区域经历地震丛集之后,该区域的应力大大释放,区域进入地震平静期;随着构造加载的持续,区域应力逐渐恢复,为下一次地震丛集或地震序列累积应力和能量;上述过程可以重复发生.因此地震丛集期与平静期交替出现.我们还统计了各个断层的大地震相互迁移的模拟结果,结果显示青藏高原东北缘下一次大地震有很大的概率会发生在海原断层上.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号