首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The discovery measurements of Mercury's exospheric magnesium, obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) probe during its second Mercury flyby, are modeled to constrain the source and loss processes for this neutral species. Fits to a Chamberlain exosphere reveal that at least two source temperatures are required to reconcile the distribution of magnesium measured far from and near the planet: a hot ejection process at the equivalent temperature of several tens of thousands of degrees K, and a competing, cooler source at temperatures as low as 400 K. For the energetic component, our models indicate that the column abundance that can be attributed to sputtering under constant southward interplanetary magnetic field conditions is at least a factor of five less than the rate dictated by the measurements. Although highly uncertain, this result suggests that another energetic process, such as the rapid dissociation of exospheric MgO, may be the main source of the distant neutral component. If meteoroid and micrometeoroid impacts eject mainly molecules, the total amount of magnesium at altitudes exceeding ∼100 km is found to be consistent with predictions by impact vaporization models for molecule lifetimes of no more than two minutes. Though a sharp increase in emission observed near the dawn terminator region can be reproduced if a single meteoroid enhanced the impact vapor at equatorial dawn, it is much more likely that observations in this region, which probe heights increasingly near the surface, indicate a reservoir of volatile Mg being acted upon by lower-energy source processes.  相似文献   

2.
Disk-integrated and disk-resolved measurements of Mercury’s surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths. The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra. The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths. The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than ∼100°. The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids. The photometric roughness of the surface is also much smoother than the Moon’s. The calculated geometric albedo (reflectance at zero phase) is higher than lunar values. The lower reflectance of immature units on Mercury compared with immature units on the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury’s regolith.  相似文献   

3.
The MESSENGER Fast Imaging Plasma Spectrometer (FIPS) measured the bulk plasma characteristics of Mercury's magnetosphere and solar wind environment during the spacecraft's first two flybys of the planet on 14 January 2008 (M1) and 6 October 2008 (M2), producing the first measurements of thermal ions in Mercury's magnetosphere. In this work, we identify major features of the Mercury magnetosphere in the FIPS proton data and describe the data analysis process used for recovery of proton density (np) and temperature (Tp) with a forward modeling technique, required because of limitations in measurement geometry. We focus on three regions where the magnetospheric flow speed is likely to be low and meets our criteria for the recovery process: the M1 plasma sheet and the M1 and M2 dayside and nightside boundary-layer regions. Interplanetary magnetic field (IMF) conditions were substantially different between the two flybys, with intense reconnection signatures observed by the Magnetometer during M2 versus a relatively quiet magnetosphere during M1. The recovered ion density and temperature values for the M1 quiet-time plasma sheet yielded np∼1–10 cm−3, Tp∼2×106 K, and plasma β∼2. The nightside boundary-layer proton densities during M1 and M2 were similar, at np∼4–5 cm−3, but the temperature during M1 (Tp∼4–8×106 K) was 50% less than during M2 (Tp∼8×106 K), presumably due to reconnection in the tail. The dayside boundary layer observed during M1 had a density of ∼16 cm−3 and temperature of 2×106 K, whereas during M2 this region was less dense and hotter (np∼8 cm−3 and Tp∼10×106 K), again, most likely due to magnetopause reconnection. Overall, the southward interplanetary magnetic field during M2 clearly produced higher Tp in the dayside and nightside magnetosphere, as well as higher plasma β in the nightside boundary, ∼20 during M2 compared with ∼2 during M1. The proton plasma pressure accounts for only a fraction (24% for M1 and 64% for M2) of the drop in magnetic pressure upon entry into the dayside boundary layer. This result suggests that heavy ions of planetary origin, not considered in this analysis, may provide the “missing” pressure. If these planetary ions were hot due to “pickup” in the magnetosheath, the required density for pressure balance would be an ion density of ∼1 cm−3 for an ion temperature of ∼108 K.  相似文献   

4.
The study of peak-ring basins and other impact crater morphologies transitional between complex craters and multi-ring basins is important to our understanding of the mechanisms for basin formation on the terrestrial planets. Mercury has the largest population, and the largest population per area, of peak-ring basins and protobasins in the inner solar system and thus provides important data for examining questions surrounding peak-ring basin formation. New flyby images from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have more than doubled the area of Mercury viewed at close range, providing nearly complete global coverage of the planet's surface when combined with flyby data from Mariner 10. We use this new near-global dataset to compile a catalog of peak-ring basins and protobasins on Mercury, including measurements of the diameters of the basin rim crest, interior ring, and central peak (if present). Our catalog increases the population of peak-ring basins by ∼150% and protobasins by ∼100% over previous catalogs, including 44 newly identified peak-ring basins (total=74) and 17 newly identified protobasins (total=32). A newly defined transitional basin type, the ringed peak-cluster basin (total=9), is also described. The new basin catalog confirms that Mercury has the largest population of peak-ring basins of the terrestrial planets and also places the onset rim-crest diameter for peak-ring basins at , which is intermediate between the onset diameter for peak-ring basins on the Moon and those for the other terrestrial planets. The ratios of ring diameter to rim-crest diameter further emphasize that protobasins and peak-ring basins are parts of a continuum of basin morphologies relating to their processes of formation, in contrast to previous views that these forms are distinct. Comparisons of the predictions of peak-ring basin-formation models with the characteristics of the basin catalog for Mercury suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. The relationship between impact-melt production and peak-ring formation is strengthened further by agreement between power laws fit to ratios of ring diameter to rim-crest diameter for peak-ring basins and protobasins and the power-law relation between the dimension of a melt cavity and the crater diameter. More detailed examination of Mercury's peak-ring basins awaits the planned insertion of the MESSENGER spacecraft into orbit about Mercury in 2011.  相似文献   

5.
The MESSENGER mission to Mercury, to be launched in 2004, will provide an opportunity to characterize Mercury's internal magnetic field during an orbital phase lasting one Earth year. To test the ability to determine the planetary dipole and higher-order moments from measurements by the spacecraft's fluxgate magnetometer, we simulate the observations along the spacecraft trajectory and recover the internal field characteristics from the simulated observations. The magnetic field inside Mercury's magnetosphere is assumed to consist of an intrinsic multipole component and an external contribution due to magnetospheric current systems described by a modified Tsyganenko 96 model. Under the axis-centered-dipole approximation without correction for the external field the moment strength is overestimated by ∼4% for a simulated dipole moment of , and the error depends strongly on the magnitude of the simulated moment, rising as the moment decreases. Correcting for the external field contributions can reduce the error in the dipole term to a lower limit of ∼1-2% without a solar wind monitor. Dipole and quadrupole terms, although highly correlated, are then distinguishable at the level equivalent to an error in the position of an offset dipole of a few tens of kilometers. Knowledge of the external magnetic field is therefore the primary limiting factor in extracting reliable knowledge of the structure of Mercury's magnetic field from the MESSENGER observations.  相似文献   

6.
In 2008 the MESSENGER spacecraft made the first direct observation of Mercury's magnetosphere in the more than 30 years since the Mariner 10 encounters. During MESSENGER's first flyby on 14 January 2008, the interplanetary magnetic field (IMF) was northward immediately prior to and following MESSENGER's equatorial passage through this small magnetosphere. The Energetic Particle Spectrometer (EPS), one of two sensors on the Energetic Particle and Plasma Spectrometer instrument that responds to electrons from ∼35 keV to 1 MeV and ions from ∼35 keV to 2.75 MeV, saw no increases in particle intensity above instrumental background (∼5 particles/cm2/sr/s/keV at 45 keV) at any time during the probe's magnetospheric passage. During MESSENGER's second flyby on 6 October 2008, there was a steady southward IMF, and intense reconnection was observed between the planet's magnetic field and the IMF. However, once again EPS did not observe bursts of energetic particles similar to those reported by Mariner 10 from its March 1974 encounter. On 29 September 2009, MESSENGER flew by Mercury for the third and final time before orbit insertion in March 2011. Although a spacecraft safe-hold event stopped science measurements prior to the outbound portion of the flyby, all instruments recorded full observations until a few minutes before the closest approach. In particular, the MESSENGER Magnetometer documented several substorm-like signatures of extreme loading of Mercury's magnetotail, but again EPS measured no energetic ions or electrons above instrument background during the inbound portion of the flyby. MESSENGER's X-Ray Spectrometer (XRS) nonetheless observed photons resulting from low-energy (∼10 keV) electrons impinging on its detectors during each of the three flybys. We infer that suprathermal plasma electrons below the EPS energy threshold caused the bremsstrahlung seen by XRS. In this paper, we summarize the energetic particle observations made by EPS and XRS during MESSENGER's three Mercury flybys, and we revisit the observations reported by Mariner 10 in the context of these new results.  相似文献   

7.
Analysis of images obtained by the MESSENGER spacecraft during its three flybys of Mercury yields a new estimate for the planet's mean radius of 2439.25±0.69 km, in agreement with results from Mariner 10 and Earth-based observations, as well as with MESSENGER altimeter and occultation data. The mean equatorial radius and polar radius are identical to within error, suggesting that rotational oblateness is negligible when compared with other sources of topography. This result is consistent with the small gravitational oblateness of the planet. Minor differences in radius obtained at different locations reflect regional variations in topography. Residual topography along three limb profiles has a dynamic range of 7.4 km and a root-mean-square roughness of 0.8 km over hemispherical scales. Following MESSENGER's entry into orbit about Mercury in March 2011, we expect considerable additional improvements to our knowledge of Mercury's size and shape.  相似文献   

8.
During its three flybys of Mercury, the MESSENGER spacecraft made the first detection of gamma-ray emission from the planet's surface. With a closest approach distance of ∼200 km, the flybys provided an opportunity to measure elemental abundances of Mercury's near-equatorial regions, which will not be visited at low altitude during MESSENGER's orbital mission phase. Despite being limited by low planetary photon flux, sufficient counts were accumulated during the first two flybys to estimate bounds on abundances for some elements having relatively strong gamma-ray spectral peaks, including Si, Fe, Ti, K, and Th. Only for Si is the standard deviation σ sufficiently small to conclude that this element was detected with 99% confidence. Iron and potassium are detected at the 2−σ (95% confidence) level, whereas only upper bounds on Ti and Th can be determined. Relative to a Si abundance assumed to be 18 weight percent (wt%), 2−σ upper bounds have been estimated as 9.7 wt% for Fe, 7.0 wt% for Ti, 0.087 wt% for K, and 2.2 ppm for Th. The relatively low upper bound on K rules out some previously suggested models for surface composition for the regions sampled. Upper bounds on Fe/Si and Ti/Si ratios are generally consistent with Ti and Fe abundances estimated from the analysis of measurements by the MESSENGER Neutron Spectrometer during the flybys but are also permissive of much lower concentrations.  相似文献   

9.
The primary crater population on Mercury has been modified by volcanism and secondary craters. Two phases of volcanism are recognized. One volcanic episode that produced widespread intercrater plains occurred during the period of the Late Heavy Bombardment and markedly altered the surface in many areas. The second episode is typified by the smooth plains interior and exterior to the Caloris basin, both of which have a different crater size-frequency distribution than the intercrater plains, consistent with a cratering record dominated by a younger population of impactors. These two phases may have overlapped as parts of a continuous period of volcanism during which the volcanic flux tended to decrease with time. The youngest age of smooth plains volcanism cannot yet be determined, but at least small expanses of plains are substantially younger than the plains associated with the Caloris basin. The spatial and temporal variations of volcanic resurfacing events can be used to reconstruct Mercury's geologic history from images and compositional and topographic data to be acquired during the orbital phase of the MESSENGER mission.  相似文献   

10.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed three flybys of Mercury in 2008–2009. During the first and third of those flybys, MESSENGER passed behind the planet from the perspective of Earth, occulting the radio-frequency (RF) transmissions. The occultation start and end times, recovered with 0.1 s accuracy or better by fitting edge-diffraction patterns to the RF power history, are used to estimate Mercury's radius at the tangent point of the RF path. To relate the measured radius to the planet shape, we evaluate local topography using images to identify the high-elevation feature that defines the RF path or using altimeter data to quantify surface roughness. Radius measurements are accurate to 150 m, and uncertainty in the average radius of the surrounding terrain, after adjustments are made from the local high at the tangent point of the RF path, is 350 m. The results are consistent with Mercury's equatorial shape as inferred from observations by the Mercury Laser Altimeter and ground-based radar. The three independent estimates of radius from occultation events collectively yield a mean radius for Mercury of 2439.2±0.5 km.  相似文献   

11.
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system.  相似文献   

12.
To examine electron transport, energization, and precipitation in Mercury's magnetosphere, a hybrid simulation study has been carried out that follows electron trajectories within the global magnetospheric electric and magnetic field configuration of Mercury. We report analysis for two solar-wind parameter conditions corresponding to the first two MESSENGER Mercury flybys on January 14, 2008, and October 6, 2008, which occurred for similar solar wind speed and density but contrasting interplanetary magnetic field (IMF) directions. During the first flyby the IMF had a northward component, while during the second flyby the IMF was southward. Electron trajectories are traced in the fields of global hybrid simulations for the two flybys. Some solar wind electrons follow complex trajectories at or near where dayside reconnection occurs and enter the magnetosphere at these locations. The entry locations depend on the IMF orientation (north or south). As the electrons move through the entry regions they can be energized as they execute non-adiabatic (demagnetized) motion. Some electrons become magnetically trapped and drift around the planet with energies on the order of 1–10 keV. The highest energy of electrons anywhere in the magnetosphere is about 25 keV, consistent with the absence of high-energy (>35 keV) electrons observed during either MESSENGER flyby. Once within the magnetosphere, a fraction of the electrons precipitates at the planetary surface with fluxes on the order of 109 cm−2 s−1 and with energies of hundreds of eV. This finding has important implications for the viability of electron-stimulated desorption (ESD) as a mechanism for contributing to the formation of the exosphere and heavy ion cloud around Mercury. From laboratory estimates of ESD ion yields, a calculated ion production rate due to ESD at Mercury is found to be on par with ion sputtering yields.  相似文献   

13.
To illustrate the spatial resolution of measurements of Mercury's surface elemental composition by the Gamma-Ray Spectrometer on the MESSENGER spacecraft after one year of orbital observations, we have simulated a global coverage map of the 846-keV iron gamma-ray count rate. The simulated map suggests that distinct geologic units larger than 800 km in horizontal dimension will be discernable when the difference in Fe abundance between adjacent geologic units exceeds 4 wt%. These results imply that the MESSENGER Gamma-Ray Spectrometer dataset will provide useful information for regional geological studies of the surface of Mercury.  相似文献   

14.
The MESSENGER spacecraft flyby of Mercury on 14 January 2008 provided a new opportunity to study the intrinsic magnetic field of the innermost planet and its interaction with the solar wind. The model presented in this paper is based on the solution of the three-dimensional, bi-fluid equations for solar wind protons and electrons in the absence of mass loading. In this study we provide new estimates of Mercury’s intrinsic magnetic field and the solar wind conditions that prevailed at the time of the flyby. We show that the location of the boundary layers and the strength of the magnetic field along the spacecraft trajectory can be reproduced with a solar wind ram pressure Psw = 6.8 nPa and a planetary magnetic dipole having a magnitude of 210 RM3 − nT and an offset of 0.18 RM to the north of the equator, where RM is Mercury’s radius. Analysis of the plasma flow reveals the existence of a stable drift belt around the planet; such a belt can account for the locations of diamagnetic decreases observed by the MESSENGER Magnetometer. Moreover, we determine that the ion impact rate at the northern cusp was four times higher than at the southern cusp, a result that provides a possible explanation for the observed north-south asymmetry in exospheric sodium in the neutral tail.  相似文献   

15.
In this study we compare the sodium exosphere observations made by Schleicher et al. [Schleicher, H., and 4 colleagues, 2004. Astron. Astrophys. 425, 1119-1124] with the result of a detailed numerical simulation. The observations, made during the transit of Mercury across the solar disk on 7 May 2003, show a maximum of sodium emission near the polar regions, with north prevalence, and the presence of a dawn-dusk asymmetry. We interpret this distribution as the resulting effect of two combined processes: the solar wind proton precipitation causing chemical alteration of the surface, freeing the sodium atoms from their bounds in the crystalline structure on the surface, and the subsequent photon-stimulated and thermal desorption of the sodium atoms. While we find that the velocity distribution of photon desorbed sodium can explain the observed exosphere population, thermal desorption seems to play a minor role only causing a smearing at the locations where Na atoms are released on the dayside. The observed and simulated distributions agree very well with this hypothesis and indicate that the combination of the proposed processes is able to explain the observed features.  相似文献   

16.
Peak-ring basins represent an impact-crater morphology that is transitional between complex craters with central peaks and large multi-ring basins. Therefore, they can provide insight into the scale dependence of the impact process. Here the transition with increasing crater diameter from complex craters to peak-ring basins on Mercury is assessed through a detailed analysis of Eminescu, a geologically recent and well-preserved peak-ring basin. Eminescu has a diameter (∼125 km) close to the minimum for such crater forms and is thus representative of the transition. Impact crater size-frequency distributions and faint rays indicate that Eminescu is Kuiperian in age, geologically younger than most other basins on Mercury. Geologic mapping of basin interior units indicates a distinction between smooth plains and peak-ring units. Our mapping and crater retention ages favor plains formation by impact melt rather than post-impact volcanism, but a volcanic origin for the plains cannot be excluded if the time interval between basin formation and volcanic emplacement was less than the uncertainty in relative ages. The high-albedo peak ring of Eminescu is composed of bright crater-floor deposits (BCFDs, a distinct crustal unit seen elsewhere on Mercury) exposed by the impact. We use our observations to assess predictions of peak-ring formation models. We interpret the characteristics of Eminescu as consistent with basin formation models in which a melt cavity forms during the impact formation of craters at the transition to peak ring morphologies. We suggest that the smooth plains were emplaced via impact melt expulsion from the central melt cavity during uplift of a peak ring composed of BCFD-type material. In this scenario the ringed cluster of peaks resulted from the early development of the melt cavity, which modified the central uplift zone.  相似文献   

17.
Plans to send orbiter missions to Mercury (e.g., NASA's Messenger and ESA's BepiColombo) have prompted renewed efforts to investigate the surface of Mercury using ground-based remote sensing. While the highest resolution instrumentation optical telescopes (e.g. HST) cannot be used at small angular distances (<45°) from the Sun (Mercury's elongation never exceeds 28° seen from Earth), advanced ground-based astronomical techniques and modern processing software can be used to construct resolved images of the poorly known part of Mercury. Our observations of the planet presented here were carried out mainly in April and May, 2002, at evening elongation of the planet, at the Skinakas astrophysical observatory of Heraklion University (Crete, Greece). A synthesis of the acquired images of the hemisphere of Mercury, which was not observed by the Mariner 10 mission (1974-1975), is presented. A double rim basin with an internal diameter of about 1000 km and an external rim about 2000 km is suggested by the data. We present the observational method, the data analysis approach, and the resulting images.  相似文献   

18.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

19.
The Mercury Laser Altimeter on the NASA MESSENGER mission has ranged to several ridges and lobate scarps during two equatorial flybys of the planet Mercury. The tectonic features sampled, like others documented by spacecraft imaging and Earth-based radar, are spatially isolated and have vertical relief in excess of 1 km. The profiles also indicate that the faulting associated with their formation penetrated to tens of kilometers depth into the lithosphere and accommodated substantial shortening. To gain insight into the mechanism(s) of strain accommodation across these structures, we perform analytical and numerical modeling of representative dynamic localization mechanisms. We find that ductile localization due to shear heating is not favored, given our current understanding of thermal gradients and shallow thermal structure of Mercury at the time of ridge and scarp formation, and is likely to be of secondary importance at best. Brittle localization, associated with loss of resistance during fault development or with velocity weakening during sliding on mature faults, is weakly localizing but permits slip to accumulate over geological time scales. The range of shallow thermal gradients that produce isolated faults rather than distributed fault sets under the assumption of modest fault weakening is consistent with previous models for Mercury’s early global thermal history. To be consistent with strain rates predicted from thermal history models and the amount of shortening required to account for the underlying large-offset faults, ridges and scarps on Mercury likely developed over geologically substantial time spans.  相似文献   

20.
Observations by the Mariner 10 spacecraft suggest that the lobate scarps on Mercury, which have been interpreted to record at most 1-2 km of radial contraction of the planet after the end of the Late Heavy Bombardment, possess a global, preferred N-S orientation but lack a strong latitudinal dependence on their surface expression. Here, we reexamine the idea that a decrease in the planetary rotation rate (despinning) coupled with global contraction of at least 3-5.5 km prior to the end of Late Heavy Bombardment resulted in global N-S oriented thrust faults. The surface expression of these faults is assumed to have been erased by the end of the Late Heavy Bombardment, and the faults were subsequently reactivated by later global contraction, producing generally N-S oriented thrust faults from an isotropic stress field. We use the estimate of >3-5.5 km contraction prior to ∼4 Ga as an additional constraint to thermomechanical simulations of the evolution of Mercury, finding that a wide range of models are consistent with this observation. The fact that a wide range of states are consistent with the contraction of Mercury prior to the end of Late Heavy Bombardment but only a restricted set of states are consistent with the at most 1-2 km of subsequent contraction bolsters the idea that there may be hidden strain on Mercury, features unseen by Mariner 10 but likely visible to the MESSENGER spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号