首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth’s magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967–1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.  相似文献   

2.
This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969–30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the “noise bits” hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM. TDS photos uniquely document in situ cohesion of dust particles and their adhesion to 12 different test surfaces. This review finds the entire TDS experiment was contaminated, being inside the aura of outgassing from astronaut Alan Shepard's spacesuit, and applies an unprecedented caveat to all TDS discoveries. Published and further analyses of Apollo DDE, TDS and LEAM measurements can provide evidence-based guidance to theoretical analyses and to management and mitigation of major problems from sticky dust, and thus help optimise future lunar and asteroid missions, manned and robotic.  相似文献   

3.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   

4.
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft will orbit the Moon at an altitude of ≈50 km with a payload that includes the Ultraviolet Spectrometer (UVS) instrument, which will obtain high spectral resolution measurements at near-ultraviolet and visible wavelengths (≈231-826 nm). When LADEE/UVS observes the lunar limb from within the shadow of the Moon it is anticipated that it will detect a lunar horizon glow (LHG) due to sunlight scattered from submicron exospheric dust, as well as emission lines from exospheric gases (particularly sodium), in the presence of the bright coronal and zodiacal light (CZL) background. A modularized code has been developed at NMSU for simulations of scattered light sources as observed by orbiting instruments in lunar shadow. Predictions for the LADEE UVS and star tracker cameras indicate that LHG, sodium (Na) emission lines, and CZL can be distinguished based on spatial morphology and spectral characteristics, with LHG dominant at blue wavelengths (∼250-450 nm) and small tangent heights. If present, LHG should be readily detected by LADEE/UVS and distinguishable from other sources of optical scattering. Observations from UVS and the other instruments aboard LADEE will significantly advance our understanding of how the Moon interacts with the surrounding space environment; these new insights will be applicable to the many other airless bodies in the solar system.  相似文献   

5.
The chemical reactivity of lunar dust is an important topic of inquiry, of fundamental scientific value and of practical relevance to human exploration of the Moon. Lunar specimens brought back to Earth by the Apollo astronauts provide a key resource for ground-based studies which help to define the initial avenues of inquiry. Even among the limited samples obtained from equatorial exploration sites, however, chemical reactivity analyses indicates that lunar dust is heterogeneous, a finding that parallels heterogeneity revealed by remote sensing studies. The region-to-region variability of lunar dust argues that a full understanding of its chemical reactivity will require in situ analysis, on a region-to-region basis. The data from such investigations will help to shape our understanding of the potential for lunar dust toxicity, and will provide insight into the types of reactions that may occur with when lunar dust interacts with organic molecules on the surface of the Moon.  相似文献   

6.
Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III   总被引:1,自引:0,他引:1  
Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA’s planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module’s close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.  相似文献   

7.
Surveyor observations of lunar horizon-glow   总被引:1,自引:0,他引:1  
Each of the Surveyor 7, 6, and 5 spacecraft observed a line of light along its western lunar horizon following local sunset. It has been suggested that this horizon-glow (HG) is sunlight, which is forward-scattered by dust grains (~ 10µ in diam, ~ 50 grains cm?2) present in a tenuous cloud formed temporarily (? 3 h duration) just above sharp sunlight/shadow boundaries in the terminator zone. Electrically charged grains could be levitated into the cloud by intense electrostatic fields (> 500 V cm?1) extending across the sunlight/shadow boundaries. Detailed analysis of the HG absolute luminance, temporal decay, and morphology confirm the cloud model. The levitation mechanism must eject 107 more particles per unit time into the cloud than could micro meteorites. Electrostatic transport is probably the dominant local transport mechanism of lunar surface fines.  相似文献   

8.
Lunar dust: The Hazard and Astronaut Exposure Risks   总被引:1,自引:0,他引:1  
This paper reviews the characterisation of lunar dust or regolith, the toxicity of the dust and associated health effects, the techniques for assessing the health risks from dust exposure and describes the measures used or being developed to mitigate exposure. Lunar dust is formed from micrometeorite impacts onto the Moon’s surface. The hypervelocity impacts result in communition and the formation of sharp and clingy agglutinates. The dust particles vary in size with the smallest being less than 10 μm. If the chemical reactive particles are deposited in the lungs, they may cause respiratory disease. During lunar exploration, the astronaut’s spacesuits will become contaminated with lunar dust. The dust will be released into the atmosphere when the suits are removed. The exposure risks to health will need to be assessed by relating to a permissible exposure limit. During the Apollo missions, the astronauts were exposed to lunar dust. Acute health effects from dust inhalation exposure included sore throat, sneezing and coughing. Long-term exposure to the dust may cause a more serious respiratory disease similar to silicosis. On future missions the methods used to mitigate exposure will include providing high air recirculation rates in the airlock, the use of a “Double Shell Spacesuit” so that contaminated spacesuits are removed before entering the airlock, the use of dust shields to prevent dust accumulating on surfaces, the use of high gradient magnetic separation to remove surface dust and the use of solar flux to sinter and melt the regolith around the spacecraft.  相似文献   

9.
Long-term degradation of optical devices on the Moon   总被引:1,自引:0,他引:1  
Forty years ago, Apollo astronauts placed the first of several retroreflector arrays on the lunar surface. Their continued usefulness for laser ranging might suggest that the lunar environment does not damage optical devices. However, new laser ranging data reveal that the efficiency of the three Apollo reflector arrays is now diminished by a factor of 10 at all lunar phases and by an additional factor of 10 when the lunar phase is near full Moon. These deficits did not exist in the earliest years of lunar ranging, indicating that the lunar environment damages optical equipment on the timescale of decades. Dust or abrasion on the front faces of the corner-cube prisms may be responsible, reducing their reflectivity and degrading their thermal performance when exposed to face-on sunlight at full Moon. These mechanisms can be tested using laboratory simulations and must be understood before designing equipment destined for the Moon.  相似文献   

10.
Microrater frequencies caused by fast (? 3 km s?1) ejecta have been determined using secondary targets in impact experiments. A primary projectile (steel sphere, diam 1.58 mm, mass 1.64 × 10?2 g) was shot in Duran glass with a velocity of 4.1 km s?1 by means of a light gas gun. The angular distribution of the secondary crater number densities shows a primary maximum around 25°, and a secondary maximum at about 60° from the primary target surface. The fraction of mass ejected at velocities of ? 3 km s?1 is only a factor of 7.5 × 10?5 of the primary projectile mass. A conservative calculation shows that the contribution of secondary microcraters (caused by fast ejecta) to primary microcrater densities on lunar rock surfaces (caused by interplanetary particles) is on the statistical average below 1% for any lunar surface orientation. Calculation of the interplanetary dust flux enhancement caused by Moon ejecta turned out to be in good agreement with Lunar Explorer 35in situ measurements.  相似文献   

11.
Crystallization from the molten state has been an important process for the formation of rocks on the Moon; the phenomenon of fractional crystallization is therefore discussed. The principal chemical and mineralogical features of the Apollo 11, 12 and 14 basaltic crystalline rocks are described, and an account is given of other rock types and minerals which are represented among the coarser particles in the lunar soils. A comparison is made between the chemical compositions (major, minor and trace element concentrations) of rocks and soils.Based upon the above data, one possible model for the outer shell of the Moon is presented, which consists of an outer layer of Al-rich rocks underlain by a layer which is more ferromagnesian in character. Partial melting of the latter was probably responsible for the extrusion of lavas at the surface which spread to form the basalts (Apollo 11 and 12) of the non-circular maria. The Apollo 14 (Fra Mauro) basalts are relatively enriched in potassium, rare earth elements, zirconium, phosphorus and certain other elements and may derive from partial melting of the more aluminous upper layer.The separation of the outer Moon into two layers could have occurred through gravity-aided fractional crystallization at an early stage (first few hundred m yr) in lunar history.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

12.
MAGIA is a mission approved by the Italian Space Agency (ASI) for Phase A study. Using a single large-diameter laser retroreflector, a large laser retroreflector array and an atomic clock onboard MAGIA we propose to perform several fundamental physics and absolute positioning metrology experiments: VESPUCCI, an improved test of the gravitational redshift in the Earth?CMoon system predicted by General Relativity; MoonLIGHT-P, a precursor test of a second generation Lunar Laser Ranging (LLR) payload for precision gravity and lunar science measurements under development for NASA, ASI and robotic missions of the proposed International Lunar Network (ILN); Selenocenter (the center of mass of the Moon), the determination of the position of the Moon center of mass with respect to the International Terrestrial Reference Frame/System (ITRF/ITRS); this will be compared to the one from Apollo and Lunokhod retroreflectors on the surface; MapRef, the absolute referencing of MAGIA??s lunar altimetry, gravity and geochemical maps with respect to the ITRF/ITRS. The absolute positioning of MAGIA will be achieved thanks to: (1) the laboratory characterization of the retroreflector performance at INFN-LNF; (2) the precision tracking by the International Laser Ranging Service (ILRS), which gives two fundamental contributions to the ITRF/ITRS, i.e. the metrological definition of the geocenter (the Earth center of mass) and of the scale of length; (3) the radio science and accelerometer payloads; (4) support by the ASI Space Geodesy Center in Matera, Italy. Future ILN geodetic nodes equipped with MoonLIGHT and the Apollo/Lunokhod retroreflectors will become the first realization of the International Moon Reference Frame (IMRF), the lunar analog of the ITRF.  相似文献   

13.
The photometry of the Moon gives us some information about the properties of the lunar surface. The photometric uniformity of the lunar surface as a scattering screen is determined by the shadow phenomena on small irregularities due to the dust layer covering the whole surface. A small component of light (< 10 %) exhibits the features of the luminescence excited by solar radiations.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

14.
An astrophotometer was used for measurements of lunar sky brightness in visible and ultraviolet range during day and night. The data obtained showed unexpectedly high values of brightness during the lunar day in the visible region. From measurements during lunar ‘twilight’ conditions and from the dependence of excessive flux on cosZ⊙ we have concluded that the effect is due to scattering of solar radiation by dust particles above the surface of the Moon. Some evidence in favour of dust clouds around the Moon is presented.  相似文献   

15.
Lunar meteorites provide important new samples of the Moon remote from regions visited by the Apollo and Luna sample return missions. Petrologic and geochemical analysis of these meteorites, combined with orbital remote sensing measurements, have enabled additional discoveries about the composition and age of the lunar surface on a global scale. However, the interpretation of these samples is limited by the fact that we do not know the source region of any individual lunar meteorite. Here, we investigate the link between meteorite and source region on the Moon using the Lunar Prospector gamma ray spectrometer remote sensing data set for the elements Fe, Ti, and Th. The approach has been validated using Apollo and Luna bulk regolith samples, and we have applied it to 48 meteorites excluding paired stones. Our approach is able broadly to differentiate the best compositional matches as potential regions of origin for the various classes of lunar meteorites. Basaltic and intermediate Fe regolith breccia meteorites are found to have the best constrained potential launch sites, with some impact breccias and pristine mare basalts also having reasonably well‐defined potential source regions. Launch areas for highland feldspathic meteorites are much less well constrained and the addition of another element, such as Mg, will probably be required to identify potential source regions for these.  相似文献   

16.
Differential very-long-baseline interferometric observations of signals from Apollo Lunar Surface Experiment Package telemetry transmitters will yield the relative projected positions of the transmitters with uncertainty of only 1-3 m, set mainly by uncertainty of the lunar ephemeris. Noise and systematic instrumental errors which in the past affected similar observations have been reduced to the equivalent of a few centimeters on the lunar surface by the development of a new type of differential receiver. Continued observations should yield a determination of the motion of the Moon about its center of mass with uncertainty less than 1 s of selenocentric arc. Improvements (by other means) in our knowledge of the Moon's orbital motion would allow a further order-of-magnitude refinement in the libration and relative position results obtainable by differential VLBI.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex. U.S.A.  相似文献   

17.
A dust cloud of Ganymede has been detected by in situ measurements with the dust detector onboard the Galileo spacecraft. The dust grains have been sensed at altitudes below five Ganymede radii (Ganymede radius=2635 km). Our analysis identifies the particles in the dust cloud surrounding Ganymede by their impact direction, impact velocity, and mass distribution and implies that they have been kicked up by hypervelocity impacts of micrometeoroids onto the satellite's surface. We calculate the radial density profile of the particles ejected from the satellite by interplanetary dust grains. We assume the yields, mass and velocity distributions of the ejecta obtained from laboratory impact experiments onto icy targets and consider the dynamics of the ejected grains in ballistic and escaping trajectories near Ganymede. The spatial dust density profile calculated with interplanetary particles as impactors is consistent with the profile derived from the Galileo measurements. The contribution of interstellar grains as projectiles is negligible. Dust measurements in the vicinities of satellites by spacecraft detectors are suggested as a beneficial tool to obtain more knowledge about the satellite surfaces, as well as dusty planetary rings maintained by satellites through the impact ejecta mechanism.  相似文献   

18.
Abstract— NASA plans to resume human exploration of the Moon in the next decade. One of the pressing concerns is the effect that lunar dust (the fraction of the lunar regolith <20 μm in diameter) will have on systems, both human and mechanical, due to the fact that various problems were caused by dust during the Apollo missions. The loss of vacuum integrity in the lunar sample containers during the Apollo era ensured that the present lunar samples are not in the same condition as they were on the Moon; they have been passivated by oxygen and water vapor. To mitigate the harmful effects of lunar dust on humans, methods of “reactivating” the dust must be developed for experimentation, and, ideally, it should be possible to monitor the level of activity to determine methods of deactivating the dust in future lunar habitats. Here we present results demonstrating that simple grinding, as a simple analog to micrometeorite crushing, is apable of substantially activating lunar dust and lunar simulant, and it is possible to determine the level of chemical activity by monitoring the ability of the dust to produce hydroxyl radicals in aqueous solution. Comparisons between ground samples of lunar dust, lunar simulant, and quartz reveal that ground lunar dust is capable of producing over three times the amount of hydroxyl radicals as lunar simulant and an order of magnitude more than ground quartz.  相似文献   

19.
F. Leblanc  J.Y. Chaufray 《Icarus》2011,216(2):551-559
Helium is one of the first elements clearly identified in the lunar exosphere (Hoffman, J.H., Hodges, R.R., Johnson, F.S., Evans, D.E. [1973]. Proc. Lunar Sci. Conf. 3, 2865–2875). Apollo 17 measured the He density at the surface during four lunations. It confirmed the expected day to night asymmetry of the He exosphere with a maximum density near the dawn terminator on the nightside. Few years later, the first detection of Mercury’s He exosphere was successfully obtained by Mariner 10 (Broadfoot, A.L., Shemansky, D.E., Kumar, S. [1976]. Geophys. Res. Lett. 3, 577–580). These observations highlighted similar global distribution of the He exosphere at Mercury and at the Moon, but also significant differences that have never been convincingly explained.In this paper, we model the He exosphere at the Moon and Mercury with the same approach. The energy accommodation of the exospheric He particles interacting with the surface can be roughly constrained using Apollo 17 and Mariner 10 measurements. Neither a low energy accommodation, as suggested by Shemansky and Broadfoot (Shemansky, D.E., Broadfoot, A.L. [1977]. Rev. Geophys. 15, 491–499), nor a full energy accommodation, as suggested by Hodges (Hodges Jr., R.R. [1975]. The Moon, 14, 139–157), can fit all the observations. These observations and their modeling suggest a diurnal variation of the energy distribution of the He ejected from the surface that cannot be explained satisfactorily by any of the present theories on the gas–surface interaction in surface-bounded exospheres.  相似文献   

20.
Farouk El-Baz 《Icarus》1975,25(4):495-537
The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respectively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geochemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides.Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impacting bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs.Profiles of the outer lunar skin were constructed from the mapping camera system, including the laser altimeter, and the radar sounder data. Materials of the crust, according to the lunar seismic data, extend to the depth of about 65 km on the near side, probably more on the far side. The mantle which underlies the crust probably extends to about 1100 km depth. It is also probable that a molten or partially molten zone or core underlies the mantle, where interactions between both may cause the deep-seated moonquakes.The three basic theories of lunar origin—capture, fission, and binary accretion—are still competing for first place. The last seems to be the most popular of the three at this time; it requires the least number of assumptions in placing the Moon in Earth orbit, and simply accounts for the chemical differences between the two bodies. Although the question of origin has not yet been resolved, we are beginning to see the value of interdisciplinary synthesis of Apollo scientific returns. During the next few years we should begin to reap the fruits of attempts at this synthesis. Then, we may be fortunate enough to take another look at the Moon from the proposed Lunar Polar Orbit (LPO) mission in about 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号