首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonant scattering of the lunar sodium exosphere was measured from the lunar orbiter SELENE (Kaguya) from December 2008 to June 2009. Variations in line-of-sight integrated intensity measured on the night-side hemisphere of the Moon could be described as a spherical symmetric distribution of the sodium exosphere with a temperature of 2400-6000 K. Average surface density of sodium atoms in February is well above that in the other months by about 30%. A clear variation in surface density related to the Moon’s passage across the Earth’s magnetotail could not be seen, although sodium density gradually decreased (by 20±8%) during periods from the first through the last quarter of two lunar cycles. These results suggest that the supra-thermal components of the sodium exosphere are not mainly produced by classical sputtering of solar wind. The variation in sodium density (which depends on lunar-phase angle) is possibly explained by the presence of an inhomogeneous source distribution of photon-stimulated desorption (PSD) on the surface.  相似文献   

2.
Observation of the lunar exosphere is a tool for remote sensing of the surface properties. The sources of this exosphere are related to the interactions of the lunar surface with the solar radiation, with the solar wind or Earth??s magnetospheric plasma, and with the interplanetary dust and meteorites. In fact, the exospheric particles are continuously created and subsequently lost in the interplanetary space, photo-ionized or re-adsorbed by the surface. Eventually, the estimation of the surface composition is not possible without the knowledge of the active release mechanisms. The relative weight of the different release processes of the various atoms, ions and molecules from the surface is still an open debate. Investigation of the Moon??s release processes and interaction with the near-Earth environment is of crucial importance for both determining the relative process release contribution and understanding the surface evolution of other airless bodies, like Mercury and the giant planets?? moons. In this work, an attempt to analyze the processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized by means of the MonteCarlo Environment Simulation Tool (EST), applied to the Moon. The model results show that the different release processes can be identified by analysing the exospheric energy distribution. Finally, the instrument concept of the ??Analizzatore Lunare di ENA?? (ALENA), part of the MAGIA payload and specifically designed for detecting the high-energy particles released from the lunar surface is presented.  相似文献   

3.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

4.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   

5.
Observations of the equatorial lunar sodium emission are examined to quantify the effect of precipitating ions on source rates for the Moon’s exospheric volatile species. Using a model of exospheric sodium transport under lunar gravity forces, the measured emission intensity is normalized to a constant lunar phase angle to minimize the effect of different viewing geometries. Daily averages of the solar Lyman α flux and ion flux are used as the input variables for photon-stimulated desorption (PSD) and ion sputtering, respectively, while impact vaporization due to the micrometeoritic influx is assumed constant. Additionally, a proxy term proportional to both the Lyman α and to the ion flux is introduced to assess the importance of ion-enhanced diffusion and/or chemical sputtering. The combination of particle transport and constrained regression models demonstrates that, assuming sputtering yields that are typical of protons incident on lunar soils, the primary effect of ion impact on the surface of the Moon is not direct sputtering but rather an enhancement of the PSD efficiency. It is inferred that the ion-induced effects must double the PSD efficiency for flux typical of the solar wind at 1 AU. The enhancement in relative efficiency of PSD due to the bombardment of the lunar surface by the plasma sheet ions during passages through the Earth’s magnetotail is shown to be approximately two times higher than when it is due to solar wind ions. This leads to the conclusion that the priming of the surface is more efficiently carried out by the energetic plasma sheet ions.  相似文献   

6.
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth’s magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967–1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.  相似文献   

7.
F. Leblanc  J.Y. Chaufray 《Icarus》2011,216(2):551-559
Helium is one of the first elements clearly identified in the lunar exosphere (Hoffman, J.H., Hodges, R.R., Johnson, F.S., Evans, D.E. [1973]. Proc. Lunar Sci. Conf. 3, 2865–2875). Apollo 17 measured the He density at the surface during four lunations. It confirmed the expected day to night asymmetry of the He exosphere with a maximum density near the dawn terminator on the nightside. Few years later, the first detection of Mercury’s He exosphere was successfully obtained by Mariner 10 (Broadfoot, A.L., Shemansky, D.E., Kumar, S. [1976]. Geophys. Res. Lett. 3, 577–580). These observations highlighted similar global distribution of the He exosphere at Mercury and at the Moon, but also significant differences that have never been convincingly explained.In this paper, we model the He exosphere at the Moon and Mercury with the same approach. The energy accommodation of the exospheric He particles interacting with the surface can be roughly constrained using Apollo 17 and Mariner 10 measurements. Neither a low energy accommodation, as suggested by Shemansky and Broadfoot (Shemansky, D.E., Broadfoot, A.L. [1977]. Rev. Geophys. 15, 491–499), nor a full energy accommodation, as suggested by Hodges (Hodges Jr., R.R. [1975]. The Moon, 14, 139–157), can fit all the observations. These observations and their modeling suggest a diurnal variation of the energy distribution of the He ejected from the surface that cannot be explained satisfactorily by any of the present theories on the gas–surface interaction in surface-bounded exospheres.  相似文献   

8.
Lunar surface potential and electric field   总被引:1,自引:0,他引:1  
The Moon has no significant atmosphere, thus its surface is exposed to solar ultraviolet radiation and the solar wind. Photoemission and collection of the solar wind electrons and ions may result in lunar surface charging. On the dayside, the surface potential is mainly determined by photoelectrons, modulated by the solar wind;while the nightside surface potential is a function of the plasma distribution in the lunar wake. Taking the plasma observations in the lunar environment as inputs, the global potential distribution is calculated according to the plasma sheath theory, assuming Maxwellian distributions for the surface emitted photoelectrons and the solar wind electrons. Results show that the lunar surface potential and sheath scale length change versus the solar zenith angle, which implies that the electric field has a horizontal component in addition to the vertical one. By differentiating the potential vertically and horizontally, we obtain the global electric field. It is found that the vertical electric field component is strongest at the subsolar point,which has a magnitude of 1 V m-1. The horizontal component is much weaker, and mainly appears near the terminator and on the nightside, with a magnitude of several mV m-1. The horizontal electric field component on the nightside is rotationally symmetric around the wake axis and is strongly determined by the plasma parameters in the lunar wake.  相似文献   

9.
A model of planetary neutral and ion-exospheres in the solar wind is formulated for weak or lunar like solar-wind interaction with a planet. The neutral exosphere model allows for density and temperature variations and for rotation at the exobase. The ion-exosphere is produced by ionization of the neutral exosphere in the solar wind and its density distribution is obtained by solving the continuity equation in the drift approximation. Applying to Mercury a surface temperature distribution inferred from infra-red data and a vanishing bound neutral flux at the base, He and He+ density distributions are found. When the He atmosphere of Mercury is due entirely to the surface bombardment by solar wind He++, the resulting He+ density is found to vary from 1.5 × 10−1 to 10−3 cm−3 over the range 1.5–5 planetocentric radii on the dayside. These densities are found to be detectable by typical solar-wind plasma instruments. The possible effects of cyclotron-resonant scattering by interplanetary magnetic field fluctuations are examined and shown to be negligible. An electromagnetic plasma instability, triggered by the birth of ions in the exosphere, is shown to be important for the thermalization of the energy mode transverse to the interplanetary magnetic field, allowing more ions to be detected by solar-wind ion probes.  相似文献   

10.
A simple analytical model is developed from which we have calculated the temperature throughout the lunar interior resulting from internal heat sources and the imposition of surface temperature boundary conditions. The surface temperature is determined almost entirely by the balance of solar heating and surface reradiation; as a consequence this temperature is latitude dependent, decreasing towards the lunar poles. The internal solution shows that the latitude effect exists almost undiminished to great depths within the Moon. It is suggested that this dependence on latitude may have a significant effect on the Moon’s thermal evolution. Using the liquefaction model the high concentration of lunar maria at low latitudes may be explained.  相似文献   

11.
The Apollo-12 ALSEP solar wind spectrometer obtained data from the lunar surface starting November 20, 1969. To a first approximation, the general features of the positive ion flux depend only on the instrument's orientation and location in space relative to the Sun-Earth system. However, there are some detectable effects of the interaction of the solar wind with the local magnetic field and surface, including the deceleration of incident positive ions and the enhancement of fluctuations in the plasma. The expected asymmetry of sunset and sunrise times due to the motion of the Moon about the Sun is not observed. On one occasion, the solar wind was incident on the ALSEP site as early as 36 hr (18°) before sunrise.  相似文献   

12.
Each year the Moon is bombarded by about 106 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10–72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphered. Much of the excavated mass returns to the lunar surface and blankets the lunar crust with a highly pulverized and “impact gardened” regolith of about 10 m thickness. Micron and sub-micron sized secondary particles that are ejected at speeds up to the escape speed of 2300 m/s form a perpetual dust cloud around the Moon and, upon re-impact, leave a record in the microcrater distribution. Such tenuous clouds have been observed by the Galileo spacecraft around all lunar-sized Galilean satellites at Jupiter. The highly sensitive Lunar Dust Experiment (LDEX) onboard the LADEE mission will shed new light on the lunar dust environment. LADEE is expected to be launched in early 2013.Another dust related phenomenon is the possible electrostatic mobilization of lunar dust. Images taken by the television cameras on Surveyors 5, 6, and 7 showed a distinct glow just above the lunar horizon referred to as horizon glow (HG). This light was interpreted to be forward-scattered sunlight from a cloud of dust particles above the surface near the terminator. A photometer onboard the Lunokhod-2 rover also reported excess brightness, most likely due to HG. From the lunar orbit during sunrise the Apollo astronauts reported bright streamers high above the lunar surface, which were interpreted as dust phenomena. The Lunar Ejecta and Meteorites (LEAM) Experiment was deployed on the lunar surface by the Apollo 17 astronauts in order to characterize the lunar dust environment. Instead of the expected low impact rate from interplanetary and interstellar dust, LEAM registered hundreds of signals associated with the passage of the terminator, which swamped any signature of primary impactors of interplanetary origin. It was suggested that the LEAM events are consistent with the sunrise/sunset-triggered levitation and transport of charged lunar dust particles. Currently no theoretical model explains the formation of a dust cloud above the lunar surface but recent laboratory experiments indicate that the interaction of dust on the lunar surface with solar UV and plasma is more complex than previously thought.  相似文献   

13.
Y. C. Whang 《Solar physics》1970,14(2):489-502
This paper presents a continued study of the two-dimensional guiding-center model of the solar wind interaction with the Moon. The characteristics theory and the computational method are discussed. The magnetic permeability of plasma is (1 + /2)–1 in the solar wind flow upstream of the Moon, and it changes to 1 in the void region of the lunar wake. The gradual change of the magnetic permeability in the penumbral region from the interplanetary condition to the void condition is explained as the source of field perturbations in the lunar wake. Perturbations of the magnetic field propagate as magnetoacoustic waves in a frame of reference moving with the plasma flow. Computer solutions were obtained to show that (i) the two principal perturbations of the magnetic field in the lunar wake (the umbral increase and the penumbral decrease) are confined to a region bounded by a Mach cone tangent to the lunar body, and (ii) the penumbral increases occur outside the lunar Mach cone. Computer solutions are also used to identify the source of field perturbations and to simulate the solar wind-moon interaction under varying interplanetary conditions.  相似文献   

14.
Imaging of low-energy neutral atoms (LENAs) in the vicinity of the Moon can provide wide knowledge of the Moon from the viewpoint of plasma physics and planetary physics. At the surface of the Moon, neutral atoms are mainly generated by photon-stimulated desorption, micrometeorite vaporization and sputtering by solar wind protons. LENAs, the energetic neutral atoms with energy range of 10-500 eV, are mainly created by sputtering of solar wind particles. We have made quantitative estimates of sputtered LENAs from the Moon surface. The results indicate that LENAs can be detected by a realistic instrument and that the measurement will provide the global element maps of sputtered particles, which substantially reflect the surface composition, and the magnetic anomalies. We have also found that LENAs around dark regions, such as the permanent shadow inside craters in the pole region, can be imaged. This is because the solar wind ions can penetrate shaded regions due to their finite gyro-radius and the pressure gradient between the solar wind and the wake region. LENAs also extend our knowledge about the magnetic anomalies and associated mini-magnetosphere systems, which are the smallest magnetospheres as far as one knows. It is thought that no LENAs are generated from mini-magnetosphere regions because no solar wind may penetrate inside them. Imaging such void areas of LENAs will provide another map of lunar magnetic anomalies.  相似文献   

15.
The study of the elements and molecules of astrobiological interest on the Moon can be made with the Gas Analysis Package (GAP) and associated instruments developed for the Beagle 2 Mars Express Payload. The permanently shadowed polar regions of the Moon may offer a unique location for the “cold-trapping” of the light elements (i.e. H, C, N, O, etc.) and their simple compounds. Studies of the returned lunar samples have shown that lunar materials have undergone irradiation with the solar wind and adsorb volatiles from possible cometary and micrometeoroid impacts. The Beagle 2’s analytical instrument package including the sample processing facility and the GAP mass spectrometer can provide vital isotopic information that can distinguish whether the lunar volatiles are indigenous to the moon, solar wind derived, cometary in origin or from meteoroids impacting on the Moon. As future Lunar Landers are being considered, the suite of instruments developed for the Mars Beagle 2 lander can be consider as the baseline for any lunar volatile or resource instrument package.  相似文献   

16.
Y.-C. Wang  W.-H. Ip 《Icarus》2011,216(2):387-402
Due to a large solar radiation effect, the sodium exosphere exhibits many interesting effects, including the formation of an extended corona and a tail-like structure. The current suite of observations allows us to study some physical properties of the sodium exosphere, such as the source rates and the interaction with the surface, both experimentally and theoretically. In order to quantify the complex variations in the sodium exosphere in more detail, we use an exospheric model with the Monte-Carlo method to examine the surface interactions of a sodium atom, including the surface thermal accommodation rate and the sticking coefficient. The source rates from different components, such as the photon stimulated desorption (PSD), the meteoroid impact vaporization (MIV), and the solar wind ion sputtering (IS), can be constrained by comparing our exospheric model calculations with the published observational data. The detected terminator to limb (TL) ratio on the disk and the tail production rate can be explained with no sticking effect and small thermal accommodation rates. We also examine the best fit of the MIV source evolution, through comparison with the disk-averaged emission. The resultant discrepancy between the observations and the model fit may reflect the surface variation in the sodium abundance. A comprehensive mapping of the surface geochemical composition of the surface by the MESSENGER and Bepi-Colombo missions should give us more information about the nature of this surface-bound exosphere.  相似文献   

17.
A three-dimensional hybrid code is used to study the electromagnetic disturbances in the solar wind that arise due to the absorption effect of the Moon. Due to the nearly insulating nature of the Moon, interplanetary magnetic fields (IMFs) can move through the interior without hindrance. However, the near-vacuum created in the wake region due to the lunar absorption effect will lead to enhancement of the strength of the magnetic field by a factor of about 1.4 in the middle of the lunar wake and lead to depletions at two sides. The situations arising from different orientations of the interplanetary magnetic fields relative to the radial direction are compared. Asymmetries of the inward diffusions both along and perpendicular to the field lines are also observed. The electric field formed from the plasma convection could reach a magnitude of 0.2–0.8 mV/m at the border of the wake. The role of the electric field on the inward accelerations is important to the geometry of the lunar wake.  相似文献   

18.
The dayside near-surface lunar plasma environment is electrostatically complex, due to the interaction between solar UV-induced photoemission, the collection of ambient ions and electrons, and the presence of micron and sub-micron sized dust grains. Further complicating this environment, although less well understood in effect, is the presence of surface relief, typically in the form of craters and/or boulders. It has been suggested that such non-trivial surface topography can lead to complex electrostatic potentials and fields, including “mini-wakes” behind small obstacles to the solar wind flow and “supercharging” near sunlit-shadowed boundaries (Criswell, D.R., De, B.R. [1977]. J. Geophys. Res. 82 (7); De, B.R., Criswell, D.R. [1977]. J. Geophys. Res. 82 (7); Farrell, W.M., Stubbs, T.J., Vondrak, R.R., Delory, G.T., Halekas, J.S. [2007]. Geophys. Res. Lett. 34; Wang, X., Horányi, M., Sternovsky, Z., Robertson, S., Morfill, G.E. [2007]. Geophys. Res. Lett. 34, L16104). In this paper, we present results from a three-dimensional, self-consistent, electrostatic particle-in-cell code used to model the dayside near-surface lunar plasma environment over a variety of local times with the presence of a crater. Additionally, we use the particle-in-cell model output to study the effect of surface topography on the dynamics of electrostatic dust transport, with the goal of understanding previous observations of dust dynamics on the Moon and dust ponding on various asteroids.  相似文献   

19.
20.
A simplified model for the interaction of the cold solar wind with lunar magnetic anomalies is considered. Since on the illuminated side of the Moon the dynamic pressure of the solar wind significantly exceeds the magnetic pressure of the anomalies, upward propagation of the lunar field is possible only by means of diffusion. This process does not depend on the velocity but only on the concentration of the solar wind and the characteristic size of anomalies. Theoretical calculations are compared with the data of Apollo 12 and Explorer 35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号