首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the morphotectonic and structural–geological characteristics of the Quaternary Martana Fault in the Umbria–Marche Apennines fold‐and‐thrust belt. This structure is more than 30 km long and comprises two segments: a N–NNW‐trending longer segment and a 100°N‐trending segment. After developing as a normal fault in Early Pleistocene times, the N–NNW Martana Fault segment experienced a phase of dextral faulting extending from the Early to Middle Pleistocene boundary until around 0.39 Ma, the absolute age of volcanics erupted in correspondence to releasing bends. The establishment of a stress field with a NE–ENE‐trending σ3 axis and NW–NNW σ1 axis in Late Pleistocene to Holocene times resulted in a strong component of sinistral faulting along N–NNW‐trending fault segments and almost pure normal faulting on newly formed NW–SE faults. Fresh fault scarps, the interaction of faulting with drainage systems and displacement of alluvial fan apexes provide evidence of the ongoing activity of this fault. The active left‐lateral kinematic along N–NNW‐trending fault segments is also revealed by the 1.8 m horizontal offset of the E–W‐trending Decumanus road, at the Roman town of Carsulae. We interpret the present‐day kinematics of the Martana Fault as consistent with a model connecting surface structures to the inferred north‐northwest trending lithospheric shear zone marking the western boundary of the Adria Plate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Three successive Mesozoic neptunian dyke generations and related unconformities suggest recurrent extensional fracturing and periods of relative sea-level rise along the NW Trento Plateau margin in the Southern Alps, Italy. The first neptunian dyke generation was induced by NNW–SSE directed extension of Early Jurassic skeletal oolitic periplatform deposits generating micritic early Middle Liassic neptunian dykes with orthogonal orientation. The second generation of neptunian dykes was possibly caused by marginal extension at the drowned platform edge penetrating Late Jurassic, red pelagic limestones with a pelagic matrix of Albian/Cenomanian age and nearly orthogonal fracture orientation. The third generation of neptunian dykes occurred after a prolonged period of submarine exposure and erosion (Aptian/Albian to Late Maastrichtian) during the rapid burial of the submarine Trento Plateau margin relief. The Late Maastrichtian neptunian dykes were caused by extension of Early to Middle Jurassic oolitic periplatform limestones along steep (inclination > 10°) submarine slopes. Generally successive neptunian dyke generations along drowned carbonate platform margins could be caused by repeated extensional brittle fracturing of lithified periplatform deposits and the filling of micritic matrix derived from overlying pelagic sediment sequences under substantial hydrostatic pressure. This would suggest that recurrent extensional fracturing is continuously recorded by neptunian dyke formation which could be used to indicate extensional tectonic activity at a foundering deep-marine carbonate platform edge.  相似文献   

3.
Located in the centre of the Argentinean Patagonia between 46° and 49°S, the Deseado Region represents the foreland domain of the Southern Patagonian Andes. Its geology is characterized by thick Mesozoic sequences which, at its eastern sector, present a Mesozoic and Cenozoic geologic evolution which has been strongly determined by the development of three major tectonic phases. The present research is based on field geological mapping, interpretation of seismic and aeromagnetic data, as well as satellite image analysis. This approach has allowed us to identify and characterize the deformation that occurred throughout Jurassic, Cretaceous and Miocene times. We interpret that the most relevant structural features are the result of normal faulting generated as a response to the Jurassic rifting stage. These extensional features have strongly influenced the subsequent geometry and distribution of younger Cretaceous and Cenozoic structures.The Jurassic extensional deformation, which affected major areas of Southern Gondwana, is the product of a major intra-continental rifting stage which was accompanied by synkinematic volcanism. This tectonic regime is characterized by SW-NE directed extension that generated major oblique WNW trending faults accommodating regional dextral-extension. In the study area, this tectonic regime is inferred from the geometries of major fault systems interpreted from available seismic reflection data, as well as from the spatial distribution and orientation of the extensional fracturing associated with the opening of hybrid and dilatational siliceous epithermal Au–Ag veins.Following the Jurassic rifting stage, a more restricted Cretaceous -post-Neocomian-compressional tectonic phase took place. Throughout this period, we interpret the previously formed Jurassic extensional structures to have been reactivated under sinistral transpression. Deformation during this period generated sinistral-reverse WNW belts of deformation, which accommodated reverse faulting, imbricate thrusts, dextral and sinistral R1 and R2 shears and disharmonic folds due to a buttress effect.Under the post-Oligocene Andean regime, W–E directed compression acted on previously-formed N to NNE-oriented normal faults. Compression and shortening uplifted a series of narrow and sub-meridional ranges which run as a 200 km long inversion-related tectonic front along the Patagonian foreland. Between 47°11′ and 48°40′S, one of these NNE ranges divides the entire Deseado Region into two distinctive structural domains. Whilst the western domain presents dominant NNW morphotectonic features, that to the east appears highly dominated by WNW fabrics of Jurassic and Cretaceous age.The structural features of the Eastern domain appear to extend further north of the Deseado Region towards the vicinity of the San Jorge Gulf. This WNW-trending belt hosts pre-Upper Cretaceous rocks and pre-drift basement rocks which include igneous Paleozoic metamorphic rocks and Permian to Triassic sedimentary units.The Deseado region’s epithermal Au–Ag Jurassic vein systems result from the infilling and deposition of low temperature hydrothermal fluids within dilatational and hybrid structures. These spectacular vein systems are compatible with the regional SW-NE extension direction controlled by the Jurassic intra-continental rifting of southern Gondwana. Dilatational and hybrid veins are preferentially hosted by fractures in the Jurassic volcanic rocks, while the veins located within the pre-volcanic basement preferentially infill normal faults. Finally, most of these epithermal vein fields where exhumed during a moderate phase of inversion during Cretaceous times.  相似文献   

4.
1 Introduction A series of studies have indicated that there were two extensional phases in the North Sea (Fig. 1). An earlier period (Late Permian-Early Triassic) of rifting occurred widely in these areas, with predominant extension direction of W-E (F?rseth, 1996; F?rseth et al., 1997). In contrast to the widely distributed Permo-Triassic extension, Jurassic extension in the North Sea were generally much more localized into the three main rift arms (Fig. 1): the Viking Graben, Moray…  相似文献   

5.
In the central part of the internal Western Alps, widespread multidirectional normal faulting resulted in an orogen-scale radial extension during the Neogene. We revisit the frontal Piémont units, between Doire and Ubaye, where contrasting lithologies allow analysing the interference with the N–S trending Oligocene compressive structures. A major extensional structure is the orogen-perpendicular Chenaillet graben, whose development was guided by an E–W trending transfer fault zone between the Chaberton backfold to the north and the Rochebrune backthrust to the south. The Chaberton hinge zone was passively crosscut by planar normal faults, resulting in a E–W trending step-type structure. Within the Rochebrune nappe, E–W trending listric normal faults bound tilted blocks that slipped northward along the basal backthrust surface reactivated as an extensional detachment. Gravity-driven gliding is suggested by the general northward tilting of the structure in relation with the collapse of the Chenaillet graben. The stress tensors computed from brittle deformation analysis confirm the predominance of orogen-parallel extension in the entire frontal Piémont zone. This can be compared with the nearby Briançonnnais nappe stack where the extensional reactivation of thrust surfaces locally resulted in prominent orogen-perpendicular extension. Such a contrasting situation illustrates how the main direction of the late-Alpine extension may be regionally governed by the nature and orientation of the pre-existing structures inherited from the main collision stage.  相似文献   

6.
The north Egyptian continental margin has undergone passive margin subsidence since the opening of Tethys, but its post-Mesozoic history has been interrupted by tectonic events that include a phase of extensional faulting in the Late Miocene. This study characterizes the geometry and distribution of Late Miocene normal faulting beneath the northern Nile Delta and addresses the relationship of this faulting to the north–northwestwards propagation of Red Sea–Gulf of Suez rifting at this time. Structural interpretation of a 2D grid of seismic reflection data has defined a Tortonian–Messinian syn-rift megasequence, when tied to well data. Normal fault correlations between seismic lines are constrained by the mapping of fault-related folds. Faults are evenly distributed across the study area and are found to strike predominantly NW–SE to NNW–SSE, with some N–S faults in the north. Faults are interpreted to be <10 km in length, typically in the range 3–6 km. This suggests that rifting in the northern Nile Delta did not proceed beyond a continental rift initiation phase, with distributed, relatively small-scale faults. This contrasts with the Gulf of Suez Rift, where faulting continued to a more evolved fault localization phase, with block-bounding faults >25 km in length. Results suggest that future studies could quantify fault evolution from rift initiation to fault linkage to displacement localization, by studying the spatial variation in faulting from the northern Nile Delta, south–southeastwards to the Gulf of Suez Rift.  相似文献   

7.
雅布赖盆地构造演化与油气聚集   总被引:1,自引:0,他引:1       下载免费PDF全文
雅布赖含油气盆地位于中国西部河西走廊地区北部,处于华北克拉通阿尔善地块中南部过渡带,属北祁连构造带,中生代为走滑拉分盆地,新生代为挤压冲断坳陷盆地。燕山早期,形成东西向雅布赖拉张断陷,主控断裂为北大山正断层,沉积中心位于盆地南部;燕山中期,碰撞造山作用致使盆地北部急剧抬升,北部中-下侏罗统地层遭受强烈剥蚀;燕山晚期,阿拉善地块及其北部地区处于伸展构造环境,雅布赖山前产生东西向正断层,急剧活动,快速沉降,形成了北东向展布的新的拉张断陷盆地。喜马拉雅期,在挤压走滑作用下,雅布赖盆地南部形成北西向南倾逆冲的推覆构造,致使北大山正断层发生错断瓦解,最终形成"东隆西坳,南断北超"的挤压坳陷构造格局。雅布赖盆地主体沉积凹陷具有较强分割性,沉降凹陷分布于南部,最大沉积岩厚度为5 400 m;凹陷内侏罗系最为发育,中侏罗统新河组、青土井组暗色泥岩、煤岩为烃源岩,砂岩为储集层,新河组泥岩互层作盖层,构成盆地内最主要的含油气组合。由于雅布赖盆地特定的早期深埋,晚期抬升破坏构造格局,造就侏罗系砂岩储层早期强烈压实致密,侏罗系煤系烃源岩成熟较晚,构造发育期与烃源岩排烃期不匹配,生成油气主要表现为近源成藏与层内滞留,形成源内自生自储,致密油应是主要勘探对象。  相似文献   

8.
Dating of the Karakorum Strike-slip Fault   总被引:6,自引:0,他引:6  
This paper mainly discusses the timing of the Karakorum strike-slip fault, and gives a brief introduction of its structures, offset, and deformational style. This fault strikes NNW-SSE. Asymmetrical folds, stretching lineation, S-C fabrics, feldspar and quartz σ-porphyroclasts, domino structure, shear cleavages and faults in the fault zone are products of tectonic movements. They all indicate a dextral slip sense of faulting. Mylonitic bands are widely developed along this fault. Phengite appears, indicating rather high deformational pressure. Geochronological data indicate that the Karakorum strike-slip faulting occurred from 6.88±0.36 to 8.75±0.25 Ma. The cumulative displacement from Muztag Ata to Muji is about 135 km.  相似文献   

9.
This paper describes the updated stratigraphy, structural framework and evolution, and hydrocarbon prospectivity of the Paleozoic, Mesozoic and Cenozoic basins of Yemen, depicted also on regional stratigraphic charts. The Paleozoic basins include (1) the Rub’ Al-Khali basin (southern flanks), bounded to the south by the Hadramawt arch (oriented approximately W–E) towards which the Paleozoic and Mesozoic sediments pinch out; (2) the San’a basin, encompassing Paleozoic through Upper Jurassic sediments; and (3) the southern offshore Suqatra (island) basin filled with Permo-Triassic sediments correlatable with that of the Karoo rift in Africa. The Mesozoic rift basins formed due to the breakup of Gondwana and separation of India/Madagascar from Africa–Arabia during the Late Jurassic/Early Cretaceous. The five Mesozoic sedimentary rift basins reflect in their orientation an inheritance from deep-seated, reactivated NW–SE trending Infracambrian Najd fault system. These basins formed sequentially from west to east–southeast, sub-parallel with rift orientations—NNW–SSE for the Siham-Ad-Dali’ basin in the west, NW–SE for the Sab’atayn and Balhaf basins and WNW–ESE for the Say’un-Masilah basin in the centre, and almost E–W for the Jiza’–Qamar basin located in the east of Yemen. The Sab’atayn and Say’un–Masilah basins are the only ones producing oil and gas so far. Petroleum reservoirs in both basins have been charged from Upper Jurassic Madbi shale. The main reservoirs in the Sab’atayn basin include sandstone units in the Sab’atayn Formation (Tithonian), the turbiditic sandstones of the Lam Member (Tithonian) and the Proterozoic fractured basement (upthrown fault block), while the main reservoirs in the Say’un–Masilah basin are sandstones of the Qishn Clastics Member (Hauterivian/Barremian) and the Ghayl Member (Berriasian/Valanginian), and Proterozoic fractured basement. The Cenozoic rift basins are related to the separation of Arabia from Africa by the opening of the Red Sea to the west and the Gulf of Aden to the south of Yemen during the Oligocene-Recent. These basins are filled with up to 3,000 m of sediments showing both lateral and vertical facies changes. The Cenozoic rift basins along the Gulf of Aden include the Mukalla–Sayhut, the Hawrah–Ahwar and the Aden–Abyan basins (all trending ENE–WSW), and have both offshore and onshore sectors as extensional faulting and regional subsidence affected the southern margin of Yemen episodically. Seafloor spreading in the Gulf of Aden dates back to the Early Miocene. Many of the offshore wells drilled in the Mukalla–Sayhut basin have encountered oil shows in the Cretaceous through Neogene layers. Sub-commercial discovery was identified in Sharmah-1 well in the fractured Middle Eocene limestone of the Habshiyah Formation. The Tihamah basin along the NNW–SSE trending Red Sea commenced in Late Oligocene, with oceanic crust formation in the earliest Pliocene. The Late Miocene stratigraphy of the Red Sea offshore Yemen is dominated by salt deformation. Oil and gas seeps are found in the Tihamah basin including the As-Salif peninsula and the onshore Tihamah plain; and oil and gas shows encountered in several onshore and offshore wells indicate the presence of proven source rocks in this basin.  相似文献   

10.
The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ∼1400 m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early–Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre‐sedimentation phase, include pre‐rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic–Early Jurassic fluvial sedimentation (Lower Sandstone, ∼300 m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ∼30 m thick); (c) Early–Middle Jurassic deepening of the basin (Lower Limestone, ∼450 m thick); (d) desiccation of the basin and deposition of Early–Middle Jurassic gypsum; (e) Middle–Late Jurassic marine transgression (Upper Limestone, ∼400 m thick); (f) Late Jurassic–Early Cretaceous basin‐uplift and marine regression (alluvial/fluvial Upper Sandstone, ∼280 m thick); (3) the post‐sedimentation phase, including Early–Late Oligocene eruption of 500–2000 m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ∼300 m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic–Cretaceous NE–SW‐directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW‐trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW–SE‐directed extension related to the Main Ethiopian Rift that formed NE‐trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E–W and NNE–SSW‐directed extensions related to oblique opening of the Main Ethiopian Rift and development of E‐trending transverse faults, as well as NE–SW‐directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E–W‐directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N‐, ESE‐ and NW‐trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The Gulf of Patti and its onshore sector represent one of the most seismically active regions of the Italian Peninsula. Over the period 1984–2014, about 1800 earthquakes with small-to-moderate magnitude and a maximum hypocentral depth of 40 km occurred in this area. Historical catalogues reveal that the same area was affected by several strong earthquakes such as the Mw = 6.1 event in April 1978 and the Mw = 6.2 one in March 1786 which have caused severe damages in the surrounding localities. The main seismotectonic feature affecting this area is represented by a NNW–SSE trending right-lateral strike-slip fault system called “Aeolian–Tindari–Letojanni” (ATLFS) which has been interpreted as a lithospheric transfer zone extending from the Aeolian Islands to the Ionian coast of Sicily. Although the large-scale role of the ATLFS is widely accepted, several issues about its structural architecture (i.e. distribution, attitude and slip of fault segments) and the active deformation pattern are poorly constrained, particularly in the offshore. An integrated analysis of field structural geology with marine geophysical and seismological data has allowed to better understand the structural fabric of the ATLFS which, in the study area, is expressed by two major NW–SE trending, en-echelon arranged fault segments. Minor NNE–SSW oriented extensional structures mainly occur in the overlap region between major faults, forming a dilatational stepover. Most faults display evidence of active deformation and appear to control the main morphobathymetric features. This aspect, together with diffused continental slope instability, must be considered for the revaluation of the seismic and geomorphological hazard of this sector of southern Tyrrhenian Sea.  相似文献   

12.
The Gorgon Platform is located on the southeastern edge of the Exmouth Plateau in the North Carnarvon Basin, North West Shelf, Australia. A structural analysis using three-dimensional (3D) seismic data has revealed four major sets of extensional faults, namely, (1) the Exmouth Plateau extensional fault system, (2) the basin bounding fault system (Exmouth Plateau–Gorgon Platform Boundary Fault), (3) an intra-rift fault system in the graben between the Exmouth Plateau and the Gorgon Platform and (4) an intra-rift fault system within the graben between the Exmouth Plateau and the Exmouth Sub-basin. Fault throw-length analyses imply that the initial fault segments, which formed the Exmouth Plateau–Gorgon Platform Boundary Fault (EG Boundary Fault), were subsequently connected vertically and laterally by both soft- and hard-linked structures. These major extensional fault systems were controlled by three different extensional events during the Early and Middle Jurassic, Late Jurassic and Early Cretaceous, and illustrate the strong role of structural inheritance in determining fault orientation and linkage. The Lower and Middle Jurassic and Upper Jurassic to Lower Cretaceous syn-kinematic sequences are separated by unconformities.  相似文献   

13.
Transpression occurs in response to oblique convergence across a deformation zone in intraplate regions and plate boundaries. The Korean Peninsula is located at an intraplate region of the eastern Eurasian Plate and has been deformed under the ENE–WSW maximum horizontal compression since the late Pliocene. In this study, we analyzed short-term instrumental seismic (focal mechanism) and long-term paleoseismic (Quaternary fault outcrop) data to decipher the neotectonic crustal deformation pattern in the southeastern Korean Peninsula. Available (paleo-)seismic data acquired from an NNE–SSW trending deformation zone between the Yangsan and Ulleung fault zones indicate spatial partitioning of crustal deformation by NNW–SSE to NNE–SSW striking reverse faults and NNE–SSW striking strike-slip faults, supporting a strike-slip partitioned transpression model. The instantaneous and finite neotectonic strains, estimated from the focal mechanism and Quaternary outcrop data, respectively, show discrepancies in their axes, which can be attributed to the switching between extensional and intermediate axes of finite strain during the accumulation of wrench-dominated transpression. Notably, some major faults, including the Yangsan and Ulsan fault zones, are relatively misoriented to slip under the current stress condition but, paradoxically, have more (paleo-)seismic records indicating their role in accommodating the neotectonic transpressional strain. We propose that fluids, heat flow, and lithospheric structure are potential factors affecting the reactivation of the relatively misoriented major faults. Our findings provide insights into the accommodation pattern of strain associated with the neotectonic crustal extrusion in an intraplate region of the eastern Eurasian Plate in response to the collision of the Indian Plate and the subduction of the Pacific/Philippine Sea Plates.  相似文献   

14.
The Novate intrusion is a Late Alpine leucogranite that intruded the structures related to dextral back‐thrusting along the Periadriatic Fault System in the Eastern Central Alps. The Novate granite was heterogeneously deformed from amphibolite to greenschist facies conditions during cooling of the intrusion. The deformation inside the granite is characterized by strongly localized and anastomosed ductile shear zones surrounding lenses of weakly deformed granite and by late faults formed at the brittle–ductile transition. The fault kinematic analysis of conjugated shear zones suggests that the Novate leucogranite was emplaced at 25 Ma in an extensional regime along the southern tip of the Forcola Fault. A model of extensional jog opening by vertical shearing along the Forcola Fault provided the space for magma accommodation. The Novate granite is the first evidence for orogen‐parallel syn‐extensional leucogranite emplacement during the Oligocene collision in the Alps.  相似文献   

15.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

16.
Analysis of fault system in the high-P/T type Sambagawa metamorphic rocks of central Shikoku, southwest Japan, shows that conjugate normal faults pervasively developed in the highest-grade biotite zone (upper structural level) in three study areas (Asemi river, Oriu and Niihama areas). These conjugate normal faults consist of NE–SW to E–W striking and moderately north-dipping (set A), and NNW–SSE striking and moderately east dipping (set B) faults. The fault set A is dominant compared to the fault set B, and hence most of deformation is accommodated by the fault set A, leading to non-coaxial deformation. The sense of shear is inferred to be a top-to-the-WNW to NNW, based on the orientations of striation or quartz slickenfibre and dominant north-side down normal displacement. These transport direction by normal faulting is significantly different from that at D1 penetrative ductile flow (i.e. top-to-the-W to WNW). It has also been found that these conjugate normal faults are openly folded during the D3 phase about the axes trending NW–SE to E–W and plunging west at low-angles or horizontally, indicating that normal faulting occurred at the D2 phase. D2 normal faults, along which actinolite breccia derived from serpentinite by metasomatism sometimes occurs, perhaps formed under subgreenschist conditions (ca. 250 °C) in relation to the final exhumation of Sambagawa metamorphic rocks into the upper crustal level. The pervasive development of D2 normal faults in the upper structural level suggests that the final exhumation of Sambagawa metamorphic rocks could be caused by “distributed extension and normal faulting (removal of overburden)” in the upper crust.  相似文献   

17.
The lateral continuity of the E?CW trending thrust sheets developed within the Lower to Middle Triassic cover of the central Southern Alps (Orobic belt) is disturbed by the occurrence of several N?CS trending transverse zones, such as the poorly known Grem?CVedra Transverse Zone (GVTZ). The GVTZ developed during the emplacement of the up to six S-verging thrust sheets consisting of Lower to Middle Triassic units, occurring immediately south of the Orobic Anticlines. The transverse zone, active during thrust emplacement related to the early Alpine compressions which pre-date the Adamello intrusion, includes three major vertical shear zones, the Grem, Pezzel and Zuccone faults. The major structure of the transverse zone is the dextral Grem fault, forming a deep lateral ramp between thrust sheets 3 and 5. A similar evolution also occurred along the Zuccone and Pezzel faults, which show a left-lateral displacement of syn-thrust folds. The Grem fault was later reactivated as an oblique tear fault during the emplacement of the Orobic Anticlines, due to back-thrusting along out-of-sequence thrust surfaces (Clusone fault). Transpressional deformations along the fault zone are recorded by the rotation of major syn-thrust folds, which also suggest a horizontal offset close to 0.5?km. Records of the first stage of evolution of the Grem fault are better preserved along its northern segment, and structural relationships suggest that it propagated southward and downward in the growing thrust stack. The study of the meso and megascopic structures developed along the GVTZ constrains the evolution of the transverse zone, illustrating the complex deformational phenomena occurring in a transpressional regime. The GVTZ probably reflects the existence of pre-existing tectonic lineaments with a similar orientation. Evidence of pre-existing structures are not preserved in the exposed units, nevertheless the N?CS extensional fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin are valid candidates.  相似文献   

18.
The Thakkhola–Mustang graben is located at the northern side of the Dhaulagiri and Annapurna ranges in North Central Nepal. The structural pattern is mainly characterised by the N020–040° Thakkhola Fault system responsible for the development of the half-graben. A detailed study of the substrate and the sedimentary fill in several outcrops indicates polyphased faulting:-pre-sedimentation faulting (Miocene), with a mainly NNW–SSE to N–S compressional stress expressed in the substratum by N020–040° and N180–N010° sinistral and N130–140° dextral conjugate strike-slip faults;-syn-sedimentation faulting (Pliocene–Pleistocene), characterised by a W–E to WNW–ESE extensional stress and tectonic subsidence of the half-graben during the Tetang period (Pliocene probably), followed by a doming of the Tetang deposits and a short period of erosion (cf. Pliocene planation surface and unconformity between the Tetang and Thakkhola Formations); the Thakkhola period (Pleistocene) is characterized by a W–E to WNW–ESE extensional stress and a major subsidence of the half graben;-post-sedimentation recurrent extensional faulting and N–S and NE–SW normal faults in the late Quaternary terrace formations.Geodynamic interpretation of the faulting is discussed in relation to the following:
  • 1.the geographic situation of the Thakkhola–Mustang half-graben in the southern part of Tibet and its setting in the Tethyan series above the South Tibetan Detachment System (STDS);
  • 2.the geodynamic conditions of the convergence between India and Eurasia and the dextral east–west shearing between the High Himalayas and south Tibet;
  • 3.the possible relations between the sinistral Thakkhola and the dextral Karakorum strike-slip faults in a N–S compressional stress regime during the Miocene.
  相似文献   

19.
Cultrera  F.  Barreca  G.  Burrato  P.  Ferranti  L.  Monaco  C.  Passaro  S.  Pepe  F.  Scarf&#;  L. 《Natural Hazards》2016,86(2):253-272

The Gulf of Patti and its onshore sector represent one of the most seismically active regions of the Italian Peninsula. Over the period 1984–2014, about 1800 earthquakes with small-to-moderate magnitude and a maximum hypocentral depth of 40 km occurred in this area. Historical catalogues reveal that the same area was affected by several strong earthquakes such as the Mw = 6.1 event in April 1978 and the Mw = 6.2 one in March 1786 which have caused severe damages in the surrounding localities. The main seismotectonic feature affecting this area is represented by a NNW–SSE trending right-lateral strike-slip fault system called “Aeolian–Tindari–Letojanni” (ATLFS) which has been interpreted as a lithospheric transfer zone extending from the Aeolian Islands to the Ionian coast of Sicily. Although the large-scale role of the ATLFS is widely accepted, several issues about its structural architecture (i.e. distribution, attitude and slip of fault segments) and the active deformation pattern are poorly constrained, particularly in the offshore. An integrated analysis of field structural geology with marine geophysical and seismological data has allowed to better understand the structural fabric of the ATLFS which, in the study area, is expressed by two major NW–SE trending, en-echelon arranged fault segments. Minor NNE–SSW oriented extensional structures mainly occur in the overlap region between major faults, forming a dilatational stepover. Most faults display evidence of active deformation and appear to control the main morphobathymetric features. This aspect, together with diffused continental slope instability, must be considered for the revaluation of the seismic and geomorphological hazard of this sector of southern Tyrrhenian Sea.

  相似文献   

20.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号