首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seeded precipitation (crystal growth) of aragonite and calcite from sea water, magnesium-depleted sea water, and magnesium-free sea water has been studied by means of the steady-state disequilibrium initial rate method. Dissolved magnesium at sea water levels appears to have no effect on the rate of crystal growth of aragonite, but a strong retarding effect on that of calcite. By contrast, at levels less than about 5 per cent of the sea water level, Mg has little or no effect on calcite growth. Extended crystal growth on pure calcite seeds in sea water of normal Mg content resulted in the crystallization of magnesium calcite overgrowths, containing 7–10 mole % MgCO3 in solid solution. This suggests that the rate inhibition by Mg is due to its incorporation within the calcite crystal structure during growth, which causes the resulting magnesian calcite to be considerably more soluble than pure calcite. The standard free energy of formation of 8.5 mole% Mg calcite calculated on this assumption is in good agreement with independent estimates of magnesian calcite stability.From the work of Katz (Geochim. Cosmochim. Acta37, 1563–1586, 1973), Plummer and Mackenzie (Amer. J. Sci. 273, 515–522, 1974), and the present paper, it can be predicted that the most stable calcite in Ca-Mg exchange equilibrium with sea water contains between 2 and 7 mole%MgCO3 in solid solution. Likewise, calcites containing more than 8.5 mole% MgCO3 are less stable, and those containing less than 8.5 mole% MgCO3 are more stable than aragonite plus Ca and Mg in sea water.  相似文献   

2.
The enthalpy of calcite has been measured directly between 973 K and 1325 K by transposed-temperature- drop calorimetry. The excess enthalpy has been analysed in terms of Landau theory for this tricritical phase transition. The zero-point enthalpy and entropy allow estimates of the parameters a and C in the Landau expansion for free energy which expresses excess free energy G as a function of the order parameter Q and temperature T: G 1/2a(T 2cT)Q 2+1/6CQ 6 with a=24 J·K·mol-1, C = 30 kJ·mol T c = 1260 ±5 K. The entropy of disorder below the transition has been formulated as a function of temperature allowing the calculation of the calcite/aragonite phase boundary when taking this extra entropy into account. There is remarkable agreement between the calculated equilibrium curve and previous experimental observations. The Landau theory predicts behaviour which fully accounts for the change in slope of the calcite/aragonite phase boundary, which is thus wholly due to the R¯3cR¯3m transition in calcite.  相似文献   

3.
The effect of dissolved barium on biogeochemical processes at cold seeps   总被引:2,自引:0,他引:2  
A numerical model was applied to investigate and quantify the biogeochemical processes fueled by the expulsion of barium and methane-rich fluids in the sediments of a giant cold-seep area in the Derugin Basin (Sea of Okhotsk). Geochemical profiles of dissolved Ba2+, Sr2+, Ca2+, SO42−, HS, DIC, I and of calcium carbonate (CaCO3) were fitted numerically to constrain the transport processes and the kinetics of biogeochemical reactions. The model results indicate that the anaerobic oxidation of methane (AOM) is the major process proceeding at a depth-integrated rate of 4.9 μmol cm−2 a−1, followed by calcium carbonate and strontian barite precipitation/dissolution processes having a total depth-integrated rate of 2.1 μmol cm−2 a−1. At the low seepage rate prevailing at our study site (0.14 cm a−1) all of the rising barium is consumed by precipitation of barite in the sedimentary column and no benthic barium flux is produced. Numerical experiments were run to investigate the response of this diagenetic environment to variations of hydrological and biogeochemical conditions. Our results show that relatively low rates of fluid flow (<∼5 cm a−1) promote the dispersed precipitation of up to 26 wt% of barite and calcium carbonate throughout the uppermost few meters of the sedimentary column. Distinct and persistent events (several hundreds of years long) of more vigorous fluid flow (from 20-110 cm a−1), instead, result in the formation of barite-carbonate crusts near the sediment surface. Competition between barium and methane for sulfate controls the mineralogy of these sediment precipitates such that at low dissolved methane/barium ratios (<4-11) barite precipitation dominates, while at higher methane/barium ratios sulfate availability is limited by AOM and calcium carbonate prevails. When seepage rates exceed 110 cm a−1, barite precipitation occurs at the seafloor and is so rapid that barite chimneys form in the water column. In the Derugin Basin, spectacular barite constructions up to 20 m high, which cover an area of roughly 22 km2 and contain in excess of 5 million tons of barite, are built through this process. In these conditions, our model calculates a flux of barium to the water column of at least 20 μmol cm−2 a−1. We estimate that a minimum of 0.44 × 106 mol a−1 are added to the bottom waters of the Derugin Basin by cold seep processes, likely affecting the barium cycle in the Sea of Okhotsk.  相似文献   

4.
Aragonite, the dense form of CaCO3, grew hydrothermally at 100–300° C and dry at 300–400° C at very low pressures from calcite strained by grinding. Nearly complete inversion to aragonite occurred in some runs with Ca-Mg chloride solutions at 0–2.4 kb and 100–200° C on strained calcite having a (10¯14) reflection with a half-width of 0.48° 2 Cu K. A little aragonite grew dry at one atm. from the ground calcite at 300–400° C in a few hrs. Simultaneous shear during recrystallization of calcite in a rotating squeezer resulted in significant aragonite at 300–400° C several kb. below the stability field. No inversion occurred in any ground calcite when previously annealed in CO2 at 500° C for a few hrs. Thermochemical data show that at least 200 cal/mole of strain energy can be produced in calcite by mild deformation. This much stored energy would lower the pressure requirements of aragonite, relative to the strained calcite by more than 3 kb, and our observation that aragonite growth was faster than strain recovery of calcite indicates that aragonite can grow in nature at reduced pressures from strained calcite.Some experiments were also carried out on highly magnesian calcites with the thought that aragonite might also form at the expense of this metastable material. No aragonite was produced, but the possibility that this mechanism could be operative in nature cannot be discounted.The microtexture of aragonitic deformed marbles from NW Washington (prehnite-pumpellyite facies rocks, courtesy of J. A. Vance) as well as electron probe microanalysis of these rocks indicates that aragonite selectively replaced highly strained calcite. The calcite-aragonite transition is thus a questionable indicator of high-pressure in certain metamorphic rocks.  相似文献   

5.
The experimental replacement of aragonite by calcite was studied under hydrothermal conditions at temperatures between 160 and 200 °C using single inorganic aragonite crystals as a starting material. The initial saturation state and the total [Ca2+]:[CO32−] ratio of the experimental solutions was found to have a determining effect on the amount and abundance of calcite overgrowths as well as the extent of replacement observed within the crystals. The replacement process was accompanied by progressive formation of cracks and pores within the calcite, which led to extended fracturing of the initial aragonite. The overall shape and morphology of the parent aragonite crystal were preserved. The replaced regions were identified with scanning electron microscopy and Raman spectroscopy.Experiments using carbonate solutions prepared with water enriched in 18O (97%) were also performed in order to trace the course of this replacement process. The incorporation of the heavier oxygen isotope in the carbonate molecule within the calcite replacements was monitored with Raman spectroscopy. The heterogeneous distribution of 18O in the reaction products required a separate study of the kinetics of isotopic equilibration within the fluid to obtain a better understanding of the 18O distribution in the calcite replacement. An activation energy of 109 kJ/mol was calculated for the exchange of oxygen isotopes between [C16O32−]aq and [H218O] and the time for oxygen isotope exchange in the fluid at 200 °C was estimated at ∼0.9 s. Given the exchange rate, analyses of the run products imply that the oxygen isotope composition in the calcite product is partly inherited from the oxygen isotope composition of the aragonite parent during the replacement process and is dependent on access of the fluid to the reaction interface rather than equilibration time. The aragonite to calcite fluid-mediated transformation is described by a coupled dissolution-reprecipitation mechanism, where aragonite dissolution is coupled to the precipitation of calcite at an inwardly moving reaction interface.  相似文献   

6.
Transient aragonite seas occurred in the early Cambrian but several models suggest the late Cambrian was a time of calcite seas. Here, evidence is presented from the Andam Group, Huqf High, Oman (Gondwana) that suggests a transient Furongian (late Cambrian) aragonite sea, characterized by the precipitation of aragonite and high‐Mg calcite ooids and aragonite isopachous, fibrous, cements. Stable carbon isotope data suggest that precipitation occurred just before and during the SPICE (Steptoean Positive Carbonate Isotope Excursion). Aragonite and high‐Mg calcite precipitation can be accounted for if mMg:Ca ratios were around 1.2 given the very high atmospheric CO2 at that time and if precipitation occurred in warm waters associated with the SPICE. This, together with reported occurrences of early Furongian aragonite ooids from various locations in North America (Laurentia), suggests that aragonite and high‐Mg calcite precipitation from seawater may have been more than just a local phenomenon.  相似文献   

7.
The solubilities of synthetic, natural and biogenic aragonite and calcite, in natural seawater of 35%. salinity at 25°C and 1 atm pressure, were measured using a closed system technique. Equilibration times ranged up to several months. The apparent solubility constant determined for calcite of 4.39(±0.20) × 10?7 mol2 kg?2 is in good agreement with other recent solubility measurements and is constant after 5 days equilibration. When we measured aragonite solubility we observed that it decreased with increasing time of equilibration. The value of 6.65(±0.12) × 10?7 mol2 kg?2, determined for equilibration times in excess of 2 months, is significantly less than that found in other recent measurements, which employed equilibration times of only a few hours to days. No statistically significant difference was found among the synthetic, natural and biogenic material. Solid to solution ratio, contamination of aragonite with up to 10 wt% calcite and recycling of the aragonite made no statistically significant difference in solubility when long equilibration times were used.Measured apparent solubility constants of aragonite and calcite are respectively 22( ± 3)% and 20( ± 2)% less than apparent solubility constants calculated from thermodynamic equilibrium constants and seawater total activity coefficients. These large differences in measured and calculated apparent solubility constants may be the result of the formation of surface layers of lower solubility than the bulk solid.  相似文献   

8.
Four seep sites located within an ∼20 km2 area offshore Georgia (Batumi seep area, Pechori Mound, Iberia Mound, and Colkheti Seep) show characteristic differences with respect to element concentrations, and oxygen, hydrogen, strontium, and chlorine isotope signatures in pore waters, as well as impregnation of sediments with petroleum and hydrocarbon potential. All seep sites have active gas seepage, near surface authigenic carbonates and gas hydrates. Cokheti Seep, Iberia Mound, and Pechori Mound are characterized by oil-stained sediments and gas seepage decoupled from deep fluid advection and bottom water intrusion induced by gas bubble release. Pechori Mound is further characterized by deep fluid advection of lower salinity pore fluids. The Pechori Mound pore fluids are altered by mineral/water reactions at elevated temperatures (between 60 and 110 °C) indicated by heavier oxygen and lighter chlorine isotope values, distinct Li and B enrichment, and K depletion. Strontium isotope ratios indicate that fluids originate from late Oligocene strata. This finding is supported by the occurrence of hydrocarbon impregnations within the sediments. Furthermore, light hydrocarbons and high molecular weight impregnates indicate a predominant thermogenic origin for the gas and oil at Pechori Mound, Iberia Mound, and Colkheti Seep. C15+ hydrocarbons at the oil seeps are allochtonous, whereas those at the Batumi seep area are autochthonous. The presence of oleanane, an angiosperm biomarker, suggests that the hydrocarbon source rocks belong to the Maikopian Formation. In summary, all investigated seep sites show a high hydrocarbon potential and hydrocarbons of Iberia Mound, Colkheti Seep, and Pechori Mound are predominantly of thermogenic origin. However, only at the latter seep site advection of deep pore fluids is indicated.  相似文献   

9.
Nonphysical pressure oscillations are observed in finite element calculations of Biot's poroelastic equations in low‐permeable media. These pressure oscillations may be understood as a failure of compatibility between the finite element spaces, rather than elastic locking. We present evidence to support this view by comparing and contrasting the pressure oscillations in low‐permeable porous media with those in low‐compressible porous media. As a consequence, it is possible to use established families of stable mixed elements as candidates for choosing finite element spaces for Biot's equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The anaerobic oxidation of methane in aquatic environments is a globally significant sink for a potent greenhouse gas. Significant gaps remain in our understanding of the anaerobic oxidation of methane because data describing the distribution and abundance of putative anaerobic methanotrophs in relation to rates and patterns of anaerobic oxidation of methane activity are rare. An integrated biogeochemical, molecular ecological and organic geochemical approach was used to elucidate interactions between the anaerobic oxidation of methane, methanogenesis, and sulfate reduction in sediments from two cold seep habitats (one brine site, the other a gas hydrate site) along the continental slope in the Northern Gulf of Mexico. The results indicate decoupling of sulfate reduction from anaerobic oxidation of methane and the contemporaneous occurrence of methane production and consumption at both sites. Phylogenetic and organic geochemical evidence indicate that microbial groups previously suggested to be involved in anaerobic oxidation of methane coupled to sulfate reduction were present and active. The distribution and isotopic composition of lipid biomarkers correlated with microbial distributions, although concrete assignment of microbial function based on biomarker profiles was complicated given the observed overlap of competing microbial processes. Contemporaneous activity of anaerobic oxidation of methane and bicarbonate-based methanogenesis, the distribution of methane-oxidizing microorganisms, and lipid biomarker data suggest that the same microorganisms may be involved in both processes.  相似文献   

11.
An extensive geochemical and biogeochemical examination of CH4 seeps in the Clam Flats area of Monterey Bay provides insight into the character of relationships between seep geochemistry and benthic foraminiferal geochemistry. The area is characterized by sulfide-rich fluids. Sulfide increases are associated with large increases in alkalinity, as well as small decreases in dissolved Ca and Mg. In addition, only small increases in NH4 are observed, but values of δ13C of dissolved inorganic C are as low as −60‰ at shallow depths (<3 cm). These observations indicate that all these processes are related to the bacterial oxidation of CH4, which is transported upward by slow seepage of pore fluids. The geochemistry of the pore fluids should be relevant to the geochemistry of the carbonate tests of living and dead foraminifera. However, a profound disequilibrium of approximately an order of magnitude occurs between the δ13C values of stained (cytoplasm-containing) foraminiferal carbonate and the C isotope values of ambient pore water dissolved inorganic C. Reasons are unclear for this isotopic disequilibrium, but have important implications for interpretations of foraminiferal carbonate as a paleoenvironmental proxy. Much fine scale work is needed to fully understand the relationships between the biogeochemistry of benthic foraminifera and the geochemistry of the pore waters where they live.  相似文献   

12.
Understanding the hydrology of cold seep environments is crucial to perform accurate estimates of fluid and chemical fluxes at sedimentary wedges. Shallow convection processes may affect fluid flux estimates and could favor the destabilization of gas hydrate accumulations, increasing the sediment-ocean methane flux. Evidence for the occurrence of convection at cold seeps, however, is still limited. We use the concentration of 14C (D14C) in carbonate crusts formed at cold seeps of the eastern Mediterranean Sea as a tracer for convective recirculation of seawater-derived fluids. A numerical model is applied to investigate the controls on 14C incorporation in cold seep carbonates. Our simulations show that increased amounts of CH4 in the expelled fluids result in elevated crust D14C, while high Ca2+ and HCO3 concentrations produce the opposite effect. Convection is the only transport process that can significantly increase crust D14C. Advection, bioirrigation, eddy diffusion and bioturbation instead, have little effect on, or produce a decrease of, crust D14C. In addition, the presence of old or modern carbon (MC) in host sediments prior to cementation and the 14C-decay associated to the time needed to form the crust contribute in defining the D14C of carbonate crusts. We then use the model to reproduce the 14C content of the eastern Mediterranean Sea crusts to constrain the chemical and hydrological conditions that led to their formation. Some crusts contain relatively low amounts of 14C (−945.0<D14C ‰<−930.2) which, assuming no ageing after crust formation, can be reproduced without considering convection. Other crusts from two sites (the Amsterdam and Napoli mud volcanoes), instead, have a very high 14C-content (−899.0<D14C ‰<−838.4) which can only be reproduced by the model if convection mixes deep fluids with seawater. Order-of-magnitude calculations using the Rayleigh criterion for convection suggest that the slow seepage (about 10 cm year−1) of low salinity (20‰) fluids at the Amsterdam sites could trigger haline convection there. On the Napoli mud volcano, where high-density brines are expelled, density-driven convection cannot take place and other processes, possibly involving the rapid movement of free gas in the sediment, could be important.  相似文献   

13.
Microstructural analyses were used to investigate the formation of a macroscale‐massive till at Knud Strand in Denmark. More than 100 thin sections were examined and microstructures mapped and counted for quantitative comparison and interpretation. Microstructures indicative of both brittle (grain lineations, edge‐to‐edge crushed grains) and ductile (turbate structures) deformation are evenly distributed in vertical profiles through the till, suggesting that strain contributed to its formation. Discrete shears (grain lineations and plasmic fabric) probably accommodated most deformation, whereas rotational deformation was less prominent. The microshear geometry fits the predicted Coulomb–Mohr failure criterion, indicating that till behaves as a plastic material. Strain estimate of ca. 101 from micromorphological proxies is two–three orders of magnitude lower than expected if the till was subjected to pervasive deformation. A hybrid of lodgement and time‐transgressive deformation is envisaged as the till‐forming processes. Our data suggest that even abundant evidence of microscale deformation at continuing high levels of strain may only record the latest process of deposition and deformation and therefore not fully reflect the complexity of till genesis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Calcite crystals were grown in a closed system by recrystallization of synthetic and natural aragonite crystals, in the presence of various CaCl2-MgCl2 solutions with and without NaCl.The distribution of Mg2+ between calcite and solution at the entire temperature range is heterogeneous, closely following the Doerner-Hoskins (Doerner and Hoskins, 1925) distribution law. λMg2+C is strongly dependent on temperature, being: 0·0573 ± 0·0017 at 25°C, 0·0681 ± 0·0019 at 35°C, 0·0778 ± 0.0022 at 50°C, 0·0973 ± 0·0021 at 70°C, and 0·1163 ±0 ·0034 at 90°C. λMg2+C is independent of the absolute concentration of Ca2+ in solution as well as of the presence of NaCl.Relatively high λMg2+C values are obtained during the initial reaction stages when too-highly reactive synthetic aragonites are recrystallized. SEM micrographs show that calcite crystals grown from such aragonites are imperfect and that their earlier formed Mg-rich cores redissolve later, resulting in apparently inconsistent λMg2+C values.Calculations applying the new λMg2+C value for 25°C and the solubility data for magnesian calcites (Chaveet al., 1962) demonstrate that although no calcite should be expected to precipate directly from open sea water, its direct precipitation (or recrystallization from aragonite) is possible in closed diagenetic systems which still contain marine solutions, provided a temporary increase in the dissolved calcium concentration takes place.The λMg2+C values obtained allow for a new insight into processes of calcite cementation of reefs and a variety of other carbonate sediments, and for a more precise definition of dedolomitization chemistry.  相似文献   

15.
《Sedimentology》2018,65(2):335-359
Predominantly fine‐grained strata were deposited in the Smith Bank Formation (Early Triassic) in the Central North Sea area of the Northern Permian Basin. Previously regarded as monotonous red claystone, examination of continuous core reveals abundant stratification, significant variation in colour, siltstone as the prevalent average grain size, and claystone is rare. Loessite occurs beyond the north‐western lacustrine margin, and aerosol dust has inundated clay pellets derived from aeolian reworking of the desiccated lake floor. The loessite has limited evidence of pluvial reworking but rare fossil roots testify to sufficient moisture to sustain plants. Loessite has not previously been differentiated successfully from other fine‐grained strata in the subsurface, but this study defines the presence of random grain‐fabric orientation as an intrinsic unequivocal characteristic of loessite that formed during air‐fall deposition of aerosol dust. Comparison with outcrop data verifies the utility of grain fabric to differentiate loessite. Tosudite, an aluminous di‐octahedral regularly ordered mixed‐layer chlorite/smectite, which is rare in sedimentary rock, forms a significant proportion (10 to 21%) of the clay mineral fraction of loessite along with a similar quantity of kaolinite. In all other samples, only illite and chlorite are identified, which is typical of fine‐grained Triassic strata. In a location, close to the southern lake margin, lacustrine strata are characterized by fining‐upward couplets of very fine‐grained sandstone into siltstone and mudstone, with occasional desiccated surfaces. Small sand injections and associated sand extrusions are common and indicate periodic fluidization of sand. Precise stratigraphic location of the Smith Bank Formation is problematic because of extremely sparse fossil preservation; however, there is no sedimentological evidence for a period of hyperaridity known from the early Olenekian in continental Europe, which may mean that the North Permian Basin was never hyperarid or that the Smith Bank Formation is restricted to the Induan.  相似文献   

16.
Current understanding of bedform dynamics is largely based on field and laboratory observations of bedforms in steady flow environments. There are relatively few investigations of bedforms in flows dominated by unsteadiness associated with rapidly changing flows or tides. As a consequence, the ability to predict bedform response to variable flow is rudimentary. Using high‐resolution multibeam bathymetric data, this study explores the dynamics of a dune field developed by tidally modulated, fluvially dominated flow in the Fraser River Estuary, British Columbia, Canada. The dunes were dominantly low lee angle features characteristic of large, deep river channels. Data were collected over a field ca 1·0 km long and 0·5 km wide through a complete diurnal tidal cycle during the rising limb of the hydrograph immediately prior to peak freshet, yielding the most comprehensive characterization of low‐angle dunes ever reported. The data show that bedform height and lee angle slope respond to variable flow by declining as the tide ebbs, then increasing as the tide rises and the flow velocities decrease. Bedform lengths do not appear to respond to the changes in velocity caused by the tides. Changes in the bedform height and lee angle have a counterclockwise hysteresis with mean flow velocity, indicating that changes in the bedform geometry lag changes in the flow. The data reveal that lee angle slope responds directly to suspended sediment concentration, supporting previous speculation that low‐angle dune morphology is maintained by erosion of the dune stoss and crest at high flow, and deposition of that material in the dune trough.  相似文献   

17.
Moulds after aragonite fossils from two Upper Ordovician limestones in the Oslo Region are filled with well sorted clastic fine sand. The fossil moulds are thought to have been formed by selective dissolution of aragonite shell material by fresh water in the vadose zone. Internal sedimentation post-dates precipitation of a thin veneer of iron poor drusy calcite cement, but predates precipitation of ferroan blocky calcite cement. These age relationships and the texture of the fine sand suggests sedimentation in semiconsolidated sediment in the vadose zone of an island during early emergence.  相似文献   

18.
Aragonite was precipitated in the laboratory at 25 °C in isotopic equilibrium with Na-Ca-Mg-Cl-CO3 solutions at two different pH values (i.e., pH = ∼8.2 and ∼10.8) by the constant addition method. On the basis of the oxygen isotope composition of the aragonite precipitates, it was demonstrated that the equilibrium aragonite-water fractionation factor is independent of the pH of the parent solution and equal to:
1000lnα(aragonite-H2O)=29.12±0.09  相似文献   

19.
To study what dictates oxygen isotope equilibrium fractionation between inorganic carbonate and water during carbonate precipitation from aqueous solutions, a direct precipitation approach was used to synthesize witherite, and an overgrowth technique was used to synthesize aragonite. The experiments were conducted at 50 and 70°C by one- and two-step approaches, respectively, with a difference in the time of oxygen isotope exchange between dissolved carbonate and water before carbonate precipitation. The two-step approach involved sufficient time to achieve oxygen isotope equilibrium between dissolved carbonate and water, whereas the one-step approach did not. The measured witherite-water fractionations are systematically lower than the aragonite-water fractionations regardless of exchange time between dissolved carbonate and water, pointing to cation effect on oxygen isotope partitioning between the barium and calcium carbonates when precipitating them from the solutions. The two-step approach experiments provide the equilibrium fractionations between the precipitated carbonates and water, whereas the one-step experiments do not. The present experiments show that approaching equilibrium oxygen isotope fractionation between precipitated carbonate and water proceeds via the following two processes:
1.
Oxygen isotope exchange between [CO3]2− and H2O:
(1)  相似文献   

20.
Pyrite in LT–HP eclogites from the western Tianshan orogenic belt yields a Re‐Os age of 378.1 ± 8.9 Ma, which is 30–70 Ma older than ages previously obtained for the same rocks using the Rb–Sr, Sm–Nd, Ar–Ar, U–Pb, and Lu–Hf isotope systems. The Tianshan LT–HP eclogite experienced temperatures of up to ~570 °C combined with pressures of up to 2.1 GPa during metamorphism. These conditions are below the transition of pyrite to pyrrhotite, which defines both pyrite stability and possibly its closure temperature for Re‐Os. Pyrite can preserve Re‐Os signatures through eclogite facies peak metamorphic conditions, and thus allow determination of the formation age of pyrite in the protolith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号