首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Geology Review》2012,54(11):1424-1429
Anisotropism of seismic velocities is at its minimum in rocks consisting mainly of feldspar and quartz, is appreciable in pyroxenes and amphiboles (chain-structured silicates), and is at its maximum in mica-rich rocks (sheef-structured silicates). Inasmuch as the difference between the formation and boundary velocities has been established by the DSS for the Earth's crust, as a whole, and is recognizable also in the tops of the mantle, the crust and the tops of the mantle probably consist of seismically anistropic rocks. -- IGR Staff.  相似文献   

2.
Continuous compositional zoning in amphibole grains in strongly deformed and lineated amphibolites from the Eastern Blue Ridge, North Carolina indicates that most of the deformation was accommodated by dissolution–precipitation creep. Amphibole in most samples shows moderate prograde and/or retrograde zoning parallel to the long‐axis with compositions ranging between magnesiohornblende and tschermakite. In one sample, grains are zoned from actinolitic (Si = 7.9 p.f.u.) cores to tschermakitic (Si = 6.2 p.f.u) rims. Amphibole‐plagioclase thermometry suggests prograde growth temperatures as low as 400 °C, but typically range from 650 to 730 °C and retrograde growth temperatures <700 °C. These estimates are corroborated quantitatively with amphibole‐garnet‐plagioclase thermobarometry and qualitatively with a positive correlation between TiO2 concentration in amphibole and calculated temperature. This growth zoning provides persuasive evidence that amphibole precipitation produced the fabric, but evidence for dissolution is less common. It is present, however in the form of truncations of complicated zoning patterns produced by healed fractures and overgrowths in low‐temperature cores by high‐temperature tschermakitic grains lacking similar internal structures. The preservation of this network of straight cracks filled with optically continuous amphibole also provides evidence against the operation of dislocation creep even to temperatures >700 °C because dislocation‐creep would have deformed the fracture network. Thus, these amphibolites deformed by dissolution–precipitation creep that produced a strong linear fabric under upper amphibolite facies, middle‐to‐lower crustal conditions. The significance of this discovery is that dissolution–precipitation creep is activated at lower stresses than dislocation creep and that the strength of the lower crust, where amphibole is the dominant mineral is probably lower than that derived from experimental studies.  相似文献   

3.
4.
Summary Limits of Stress Measurements in the Earth's Crust. Accurate measurements of stress in the Earth's crust cannot be performed at deep levels with currently available recording procedures. The maximum stress recordable is about 100MPa, and the maximum depth 1000–1200 m.
Zusammenfassung Grenzen der Bestimmbarkeit der Spannungen in der Erdkruste. In großen Tiefen kann mit derzeit verfügbaren Untersuchungsmethoden die tatsächliche Spannung in der Erdkruste nicht bestimmt werden. Die größte meßbare Spannung beträgt ungefähr 100 MPa, die größte Tiefe 1000–1200 m.

Résumé Limites de la possibilité de la détermination des contraintes dans l'écorce terrestre. Il est impossible de faire des déterminations exactes des contraintes dans l'écorce terrestre en utilisant les méthodes courantes. La contrainte la plus grande qui peut être mesurée est à peu près 100 MPa et la profondeur maximale 1000–1200 m.


A lecture delivered at the Joint General Assemblies of the IASPEI and IAVCEI in Durham, August 1977.

With 4 Figures  相似文献   

5.
Formation of reservoirs in crystalline rocks is associated with the development of rifts, with the periodic axial plunge of the rift floor during the extension of the Earth's crust, and with the elevation of consolidated basement masses during a compression phase.  相似文献   

6.
Small amounts of felsic, evolved plutonic rocks, often called oceanic plagiogranites, always occur as veins or small stocks within the gabbroic section of the oceanic crust. Four major models are under debate to explain the formation of these rocks: (1) late-stage differentiation of a parental MORB melt, (2) partial melting of gabbroic rocks, (3) immiscibility in an evolved tholeiitic liquid, and (4) assimilation and partial melting of previously altered dikes. Recent experimental data in hydrous MORB-type systems are used to evaluate the petrogenesis of oceanic plagiogranites within the deep oceanic crust. Experiments show that TiO2 is a key parameter for the discrimination between different processes: TiO2 is relatively low in melts generated by anatexis of gabbros which is a consequence of the low TiO2 contents of the protolith, due to the depleted nature of typical cumulate gabbros formed in the oceanic crust. On the other hand, TiO2 is relatively high in those melts generated by MORB differentiation or liquid immiscibility. Since the TiO2 content of many oceanic plagiogranites is far below that expected in case of a generation by simple MORB differentiation or immiscibility, these rocks may be regarded as products of anatexis. This may indicate that partial melting processes triggered by water-rich fluids are more common in the deep oceanic crust than believed up to now. At slow-spreading ridges, seawater may be transported via high-temperature shear zones deeply into the crust and thus made available for melting processes.  相似文献   

7.
《地学前缘(英文版)》2018,9(6):1859-1870
We investigated phase relations, mineral chemistry, and density of lunar highland anorthosite at conditions up to 125 GPa and 2000 K. We used a multi-anvil apparatus and a laser-heated diamond-anvil cell for this purpose. In-situ X-ray diffraction measurements at high pressures and composition analysis of recovered samples using an analytical transmission electron microscope showed that anorthosite consists of garnet, CaAl4Si2O11-rich phase (CAS phase), and SiO2 phases in the upper mantle and the mantle transition zone. Under lower mantle conditions, these minerals transform to the assemblage of bridgmanite, Ca-perovskite, corundum, stishovite, and calcium ferrite-type aluminous phase through the decomposition of garnet and CAS phase at around 700 km depth. Anorthosite has a higher density than PREM and pyrolite in the upper mantle, while its density becomes comparable or lower under lower mantle conditions. Our results suggest that ancient anorthosite crust subducted down to the deep mantle was likely to have accumulated at 660–720 km in depth without coming back to the Earth's surface. Some portions of the anorthosite crust might have circulated continuously in the Earth's deep interior by mantle convection and potentially subducted to the bottom of the lower mantle when carried within layers of dense basaltic rocks.  相似文献   

8.
It is proposed that a contribution to orogeny is made by tidal flexing of the Earth's crust. It is suggested that the crust of the Earth is continually expanding horizontally as a result of tidal flexing, and that the pressures caused by this expansion are relieved by folding, faulting and volcanism in zones of weakness which ultimately become zones of granitic accumulation. This expansion also helps account for the concentration of granitic materials of the crust into continental masses.  相似文献   

9.
The kinetics of the formation and precipitation of nanocolloidal silica from geologically relevant aqueous solutions is investigated. Changes in monomeric (SiO2(mono)), nanocolloidal (SiO2(nano)) and precipitated silica (SiO2(ppt)) concentrations in aqueous solutions from pH 3 to 7, ionic strengths (IS) of 0.01 and 0.24 molal, and initial SiO2 concentrations of 20.8, 12.5 and 4.2 mmolal (reported in [Icopini, G.A., Brantley, S.L., Heaney, P.J., 2005. Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 °C. Geochim. Cosmochim. Acta69(2), 293-303.]) were fit using two kinetic models. The first model, termed the concentration model, is taken from Icopini et al. (2005) and assumes that the rate of change of SiO2(mono) as a function of time has a fourth-order dependence on the concentration of SiO2(mono) in solution. The second model, termed the supersaturation model, incorporates the equilibrium concentration of amorphous silica and predicts that polymerization will be a function of the degree of silica supersaturation in solution with respect to amorphous silica. While both models generally predicted similar rate constants for a given set of experimental conditions, the supersaturation model described the long-term equilibrium behavior of the SiO2(mono) fraction more accurately, resulting in significantly better fits of the monomeric data. No difference was seen between the model fits of the nanocolloidal silica fraction. At lower pH values (3-4), a metastable equilibrium was observed between SiO2(mono) and SiO2(nano). This equilibrium SiO2(mono) concentration was found to be 6 mmolal, or three times the reported solubility of bulk amorphous silica under the experimental conditions studied and corresponds to the predicted solubility of amorphous silica colloids approximately 3 nm in diameter. Atomic force microscopy was used to determine the average size of the primary nanocolloidal particles to be ∼3 nm, which is in direct agreement with the solubility calculations. Larger aggregates of the primary nanocolloids were also observed to range in size from 30 to 40 nm. This work provides the first kinetic models describing the formation and evolution of nanocolloidal silica in environmentally relevant aqueous solutions. Results indicate that nanocolloidal silica is an important species at low pH and neutral pH at low ionic strengths and may play a more important role in geochemical cycles in natural aqueous systems than previously considered.  相似文献   

10.
The Earth’s tungsten budget during mantle melting and crust formation   总被引:1,自引:0,他引:1  
During silicate melting on Earth, W is one of the most incompatible trace elements, similar to Th, Ba or U. As W is also moderately siderophile during metal segregation, ratios of W and the lithophile Th and U in silicate rocks have therefore been used to constrain the W abundance of the Earth’s mantle and the Hf-W age of core formation. This study presents high-precision W concentration data obtained by isotope dilution for samples covering important silicate reservoirs on Earth. The data reveal significant fractionations of W from other highly incompatible lithophile elements such as Th, U, and Ta. Many arc lavas exhibit a selective enrichment of W relative to Th, U, and Nb-Ta, reflecting W enrichment in the sub-arc mantle via fluid-like components derived from subducting plates. In contrast, during enrichment by melt-like subduction components, W is generally slightly depleted relative to Th and U, but is still enriched relative to Ta. Hence, all arc rocks and the continental crust exhibit uniformly low Ta/W (ca. 1), whereas W/Th and W/U may show opposite fractionation trends, depending on the role of fluid- and melt-like subduction components. Further high-precision W data for OIBs and MORBs reveal a systematic depletion of W in both rock types relative to other HFSE, resulting in high Ta/W that are complementary to the low Ta/W observed in arc rocks and the continental crust. Similar to previous interpretations based on Nb/U and Ce/Pb systematics, our Ta/W data confirm a depletion of the depleted upper mantle (DM) in fluid mobile elements relative to the primitive mantle (PRIMA). The abundance of W in the depleted upper mantle relative to other immobile and highly incompatible elements such as Nb and Ta is therefore not representative of the bulk silicate Earth. Based on mass balance calculations using Ta-W systematics in the major silicate reservoirs, the W abundance of the Earth’s primitive mantle can be constrained to 12 ppb, resulting in revised ratios of W-U and W-Th of 0.53 and 0.14, respectively. The newly constrained Hf-W ratio of the silicate Earth is 25.8, significantly higher than previously estimated (18.7) and overlaps within error the Hf-W ratio proposed for the Moon (ca. 24.9). The 182Hf-182W model age for the formation of the Earth’s core that is inferred from the 182W abundance and the Hf/W of the silicate Earth is therefore younger than previously calculated, by up to 5 Myrs after solar system formation depending on the accretion models used. The similar Hf/W ratios and 182W compositions of the Earth and the silicate Moon suggest a strong link between the Moon forming giant impact and final metal-silicate equilibration on the Earth.  相似文献   

11.
The genesis of refractory melts in the formation of oceanic crust   总被引:8,自引:0,他引:8  
Refractory, primary liquids arising in various oceanic plate tectonic settings are characterized by high MgO, SiO2, Ca/Na, low TiO2 and generally low incompatible element abundances relative to primary liquids parental to MORB. We propose that the former melts segregate from upper mantle peridotite which has earlier been depleted by extraction of picritic melts which were parental to MORB. A compositional range in the second-stage melts is expected, depending on the extent of previous depletion of the peridotite, the temperature and pressure of melt segregation, and the possible influence of volatile phases (C-H-O) present during melting.An example of a second stage melt is of magnesian quartz tholeiite composition, identified from among the Upper Pillow Lavas, Troodos ophiolite, Cyprus. Experimental studies determine that this composition has appropriate liquidus phases to have segregated from depleted upper mantle peridotite at about 25 km, 1360° C leaving a harzburgite residue. The experimental studies are applied to interpretation of cooling histories and water contents of specific Upper Pillow Lavas. Magma batches are estimated to have contained 0.5–1.0% H2O. Picritic lavas quenched from olivine +liquid at <5 kb. Magnesian, pyroxene-phyric lavas exhibit intratelluric crystallization at 5 kb, 1270° C (Mg88 pigeonite and Mg89 orthopyroxene).These and other second-stage melts will crystallize extremely refractory minerals identical to many found in cumulate sequences in ophiolites, in plutonic rocks dredged and drilled from ocean basins, and occurring as xenocrysts in ocean floor basalts. Multistage melting of upper mantle peridotite, with and without presence of water, reconciles some of the present difficulties in relating ophiolite and ocean floor basalt compositions, and is an important process in ocean crust formation in a variety of different oceanic settings (mid-ocean ridges, marginal basins, and island arcs).  相似文献   

12.
The SUDETES 2003 wide-angle refraction/reflection experiment covered the area of the south-western Poland and the northern Bohemian Massif. The good quality data that were gathered combined with the data from previous experiments (POLONAISE'97, CELEBRATION 2000) allowed us to prepare a 3D seismic model of the crust and uppermost mantle for this area. We inverted travel times of both refracted and reflected P waves using the JIVE3D package. This allowed us to obtain a model of P-wave velocity distribution as well as the shape of major boundaries in the crust. We also present a detailed uncertainty analysis for both the boundary depths and the velocity field. In doing the uncertainty analysis we found an interesting, strong dependence between uncertainty and inversion scheme (order of used phases). We also compared the model with surface geology and found good correlation between velocity inhomogeneities in the uppermost crust (down to 2 km) and major geological units. The higher velocity lower crust (6.9–7.2 km/s) could result from remelting of the lower crust or magmatic underplating.  相似文献   

13.
Density constraints on the formation of the continental Moho and crust   总被引:1,自引:0,他引:1  
The densities of mantle magmas such as MORB-like tholeiites, picrites, and komatiites at 10 kilobars are greater than densities for diorites, quartz diorites, granodiorites, and granites which dominate the continental crust. Because of these density relations primary magmas from the mantle will tend to underplate the base of the continental crust. Magmas ranging in composition from tholeiites which are more evolved than MORB to andesite can have densities which are less than rocks of the continental crust at 10 kilobars, particularly if they have high water contents. The continental crust can thus be a density filter through which only evolved magmas containing H2O may pass. This explains why primary magmas from the mantle such as the picrites are so rare. Both the over-accretion (i.e., Moho penetration) and the under-accretion (i.e., Moho underplating) of magmas can readily explain complexities in the lithological characteristics of the continental Moho and lower crust. Underplating of the continental crust by dense magmas may perturb the geotherm to values which are characteristic of those in granulite to greenschist facies metamorphic sequences in orogenic belts. An Archean continental crust floating on top of a magma flood or ocean of tholeiite to komatiite could have undergone a major cleansing process; dense blocks of peridotite, greenstone, and high density sediments such as iron formation could have been returned to the mantle, granites sweated to high crustal levels, and a high grade felsic basement residue established.  相似文献   

14.
The geological reconstructions suggest that prior to the Upper-Proterozoic sedimentation the Bohemian Massif was formed by a relatively uniform, stable crust with highgrade metamorphites near the surface. This ancient Moldanubian Formation is thought to be 1000–1800 m. y. old. The lowest Earth's crust layer of the initial Moldanubian structure is inferred to be composed by partially hydrated ultramafics.Three principal units showing different development of the initial structure are briefly discussed. The Moldanubicum represents a rigid block. The old Moldanubian sequence was transformed mainly due to the Paleozoic periplutonic metamorphism. An Upper-Proterozoic graben-type collapse generated the Teplá-Barrandian and Labe basins. Attention is given to the possible causes, mechanism and consequences of the longlasting geosynclinal subsidence. In Erzgebirge and Sudeten the initial Moldanubian structure was transformed in a combined way due to the geosynclinal development and Paleozoic metamorphism. Corresponding changes in the Earth's crust are discussed.
Zusammenfassung Geologische Rekonstruktionen führen zur Ansicht, daß die Böhmische Masse in der Zeitperiode vor der oberproterozoischen Sedimentation aus verhältnismäßig gleichartiger, stabiler Erdkruste mit nahe der Erdoberfläche gelegenen, durch Tiefenmetamorphose umgewandelten Gesteinen bestand. Das Alter dieser »moldanubischen« Formation wird auf 1000 bis 1800 Mill. Jahre geschätzt. Der untere Teil der moldanubischen Ausgangskruste dürfte wahrscheinlich von partiell hydratisierten Ultramafiten aufgebaut worden sein.Im vorliegenden Aufsatz werden drei Gebiete besprochen, wo eine unterschiedliche Entwicklung des ursprünglichen Baues erfolgte. Das Moldanubikum bildet einen rigiden Block, worin der ursprüngliche Ausgangsbau vor allem durch die paläozoische periplutonische Metamorphose umgewandelt wurde. In dem Teplá-Barrandium- und dem Labe (Elbe)-Gebiet erfolgte im oberen Proterozoikum eine Grabeneinsenkung des alten Baues in die Tiefe. Im Text wird ein Modell von Ursachen, Mechanismus und Folgen der langfristigen geosynklinalen Subsidenz dieses Gebietes dargestellt. Im Erzgebirge und in den Sudeten wurde der moldanubische Ausgangsbau durch eine geosynklinale Entwicklung und die paläozoische Metamorphose umgewandelt. Die unterschiedliche Entwicklung führte zu Änderungen in der Zusammensetzung und Mächtigkeit der Erdkruste, die in erwähnten Einheiten durch seismische Charakteristik gekennzeichnet wird.

Résumé Une reconstruction géologique montre que le Massif de Bohême était formé — avant la sédimentation du Protérozoique supérieur — par une écorce relativement stable et uniforme avec des métamorphites profondément transformée située près de la surface. L'âge de cette ancienne formation »Moldanubienne« est estimée à 1000–1800 millions d'années. La couche la plus profonde de la croûte originelle de la structure Moldanubienne initiale est considerée comme composée par des roches ultramafiques, hydratées en partie.L'auteur discute brièvement les trois unités principales d'ou découle un développement différent de la structure initiale. Le Moldanubien forme un bloc rigide dans lequel la structure initiale de départ a été transformée principalement par le métamorphisme paléozoïque périplutonique. Au Protérozoïque supérieur, un effondrement du type graben a créé les bassins Teplá-Barrandien et de Labe. Les causes possibles, le méchanisme et les conséquences de la subsidence géosynclinale de longue durée sont étudiées. Dans l'Erzgebirge et dans les Sudètes, la structure moldanubienne initiale a été transformée par le développement géosynclinal de même que par le métamorphisme paléozoïque. Les changements y correspondant dans l'écorce terrestre sont discutées.

, , . «» 1000 1800 . , , . . . . - . , . . .
  相似文献   

15.
通过1/5万区域地质调查,笔者在围场县北部山湾子盆地张家口组顶部发现古风化壳,风化壳由张家口组顶部酸偏碱性火山岩风化残积形成,灰紫、紫红色,厚5~100 cm,延伸较稳定,长约30 km,垂直分带特征明显,上部为强风化的残积层,结构疏松,残积碎石颗粒较小,粘土矿物占比较高;下部为半风化层,主要由残积碎石组成,原岩结构、构造特征保存较完好,底部风化强度较弱,碎石间仍断续相连,与下伏基岩呈渐变过渡,风化壳的存在,表明大北沟组与下伏张家口组之间存在明显间断,我们将其确定为大北沟组底界,解决了以往区内张家口组与大北沟组界线位置不易确定及划分比较混乱的问题.山湾子盆地半壁山河南大北沟组剖面顶底齐全,化石丰富,接触关系清楚,无疑是研究大北沟组较为理想的场所之一.笔者等对围场北部山湾子盆地大北沟组进行了划分对比研究,为区域上大北沟组的研究及大北沟组与张家口组界线的划分具有借鉴意义.  相似文献   

16.
Ocean Drilling Program hole 504B revealed an ocean crust hydrothermal sulphur anomaly on the dyke–lava transition, with implications for global sulphur sinks. Here we confirm the presence of the anomaly sporadically along 7.5 km of dyke–basalt contact on the Macquarie Ridge at Macquarie Island, a 39–9.7 Ma slow‐spreading setting. Background contact‐zone pyrite S contents average 1845 p.p.m. across ~50 m. However, zones of small‐scale brittle faulting that commonly occur on and above the dyke–basalt contact average between 5000 and 11 000 p.p.m. S (20–30 m widths). These consist of steep ridge‐parallel faults and fault splays on the contact, overlain by up to 50 m of linked pyritic fault trellis. The contact zone faults are haloed by disseminated pyrite–chlorite, cross‐cut by quartz–chlorite–sphalerite and epidote‐cemented breccias, containing evidence of turbulent flow. The structural control on sulphur deposition is attributed to the active extensional slow spreading setting. With increasing extension, diffuse mixing across the contact was replaced by channellized flow and dynamic mixing in fault arrays. The magnitude of the dyke–lava transition sulphur sink must be reassessed to take account of this heterogeneity.  相似文献   

17.
A novel approach of studying dust, black crust and host limestones by using various techniques is presented in this paper. Samples were collected from limestone monuments located in rural, urban and industrial areas in Germany and Hungary. The paper focuses on differences in the mineralogical composition, major and trace element distribution of materials and their total polyaromatic hydrocarbons (PAH) concentration having different exposure to air pollutants. High concentration of gypsum was found in laminar and dendritic black crusts and even in the dust of both urban and rural areas, despite the low concentration of SO2 in rural atmospheric environments. The black crusts show a typical microfabric with distinct layers of various gypsum–calcite mineral associations, silt-sized mineral fragments and black particle content. In dust, newly formed gypsum crystals were found along with mineral fragments, and siliceous and, less frequently, carbonaceous fly ash particles. High concentration of lead was found both in the samples of urban and rural areas of Germany and Hungary. Lead mostly accumulates in dust and also in the black crust. Highest lead concentrations were found not on the surface of the black crust, but close to the crust/limestone boundary according to LA-ICPMS analyses. It indicates that despite the ban of leaded petrol, lead is still present in the dust and the in the soiled zones of the built environment. Similarly to lead, no significant difference in the total PAH content of dust and crust samples were found in the two countries. Dusts are equally enriched in PAH in both countries, whereas black crusts contain fewer amounts. Most of the aqueous extracts of the samples were saturated with respect to sulphate, which also indicate the presence of gypsum, whilst in some German samples unsaturated conditions were detected. In summary, by using a combination of these analytical techniques, it was possible to distinguish rural and urban samples and to outline the role of dust in bringing pollutants to the stone surface. It is suggested that the analysed dust and stone samples indicate not only present, but also the past, pollution fluxes and as a consequence stones similar to sediments or surface waters can be used as environment indicators.  相似文献   

18.
《Tectonophysics》1987,142(1):71-85
Analysis of data gathered during the 1983 European Geotraverse southern segment (EGT-S '83) experiments in the region extending from the Emilia-Liguria Apennines to the western Alpine Arc together with data from seismic profiles in the northwestern Apennines accumulated within the framework of the Alps-Apennines Orogene Study Group indicate new details on the structure of the upper crust east and west of the Alps-Apennines boundary.The main results of this analysis centre on two areas. In the Piedmont Tertiary Basin we could determine the depocenter configurations of the 6–7 km thick terrigenous sequence and differentiate the tectonic units in the Piedmont (Alpine) and the Ligurian (Apennine) domains within the basement. In the other area, the Insubric domain underneath the Ligurian nappes of the northern Apennines, we found indications of tectonic doubling within the terrigenous-carbonate sequence in which thrusting attenuates towards the underlying basement, detected at a depth of 12–15 km. In addition, we found that, on a line from the Emilia Apennines to the Monferrato Hills, displacement of the Ligurian nappes over the Insubric domain diminishes to nearly one-third its original extent.  相似文献   

19.
地球内部水与无机成烃   总被引:1,自引:0,他引:1       下载免费PDF全文
地球内部水是广泛存在的,由于高温高压作用使其具有独特的物理和化学性质,它对于烃类物质生成和运移都具有重要的意义。在地球内部,水与无机矿物作用产生H2或者O2,对C-O-H流体平衡存在影响,这是烃类物质形成和稳定的重要因素。地球内部高温高压水热流体一方面为有机反应提供高效的介质,另一方面它直接作为反应物与碳酸盐和金属碳化物反应生成烃类物质。对于地球早期有机物形成和水热条件下有机物的主要合成反应——费托反应,其重要的成烃物质H2主要由水与矿物作用产生,这是目前较为认同的地球内部无机成烃的重要方式。  相似文献   

20.
The Cretaceous–Palaeogene (K/Pg) boundary interval is often penetrated by burrows, which may obscure stratigraphic and micropalaeontological records, leading to misinterpretations of the sequence of events spanning the K/Pg boundary. Here, we assess the role of burrowing organisms in the redistribution of benthic foraminifera across the boundary at Bidart (France), and report a strong relationship between the behaviour represented by pre‐ and post‐K/Pg trace fossils and their benthic foraminiferal content. We further infer a brief interval of eutrophic conditions at the seafloor, as reported from other locations, which disappeared from the lowermost Danian stratigraphic record and is represented only inside post‐K/Pg trace fossils hosted in Cretaceous strata. The combined study of trace fossils and microfossils is a powerful tool in eco‐stratigraphy and event‐stratigraphy, and can yield important insights into the completeness of the K/Pg record, especially at locations such as Bidart where this interval has traditionally been assumed to be complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号