首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terrestrial plants and insects currently account for the majority of the Earth's biodiversity, and approximately half of insect species are herbivores. Thus, insects and plants share ancient associations that date back more than 400 Myr. However, investigations of their past interactions are at the preliminary stages in Western Europe. Herein, we present the first results of our study of various feeding damage based on a dataset of nearly 3500 examined plant specimens from the Lower Miocene of the Lagerst?tte Bílina Mine in the Most Basin, Czech Republic. This site provides a unique view of the Neogene freshwater ecosystems. It has long been studied by scientists working in different branches of sedimentology, paleobotany, and paleozoology. The fossils are preserved in three characteristic horizons overlaying the coal seam (Clayey Superseam Horizon, Delta Sandy Horizon, and Lake Clayey Horizon), reflecting paleoenvironmental changes in a short time period of development. The trace fossils are classified as functional feeding groups or “guilds”, without searching for a direct cause or a recent analog host relation. Approximately 23% of specimens of dicotyledonous plant leaves were found to be damaged and associated with some leaf “morphotypes”. Deciduous plant–host taxa, and those with a chartaceous texture typical of riparian habitats, were frequently damaged, such as Populus, recorded with two species Populus zaddachii and Populus populina (57.9% and 31% herbivory levels, respectively), followed by Acer, Alnus, and Carya, averaging almost 30% of damaged leaves/leaflets. There has been evidence of 60 damage types (DT) representing all functional feeding groups recorded at the Bílina Mine, including 12 types of leaf mines and 16 gall-type DT. In total, Lower Miocene of the Lagerst?tte Bílina Mine exhibits a high level of external foliage feeding types (23.7%), and a low level of more specialized DT, such as galls (4.3%) and leaf mines (<1%). A broader comparison based on DT of the main sedimentary environments shows significance supporting different biomes by frequency of damage levels and DT diversities.  相似文献   

2.
Sediments of the upper part of the Sokolov Formation of the Sokolov Brown Coal Basin consist mostly of brown lacustrine clays and claystones enriched in organic matter (2–18% TOC). The lower portion of the stratigraphic profile is formed mostly by kaolinite–illite clays and claystones, while the montmorillonite content increases in the upper portion. The change in the lithology of sediments is caused by the gradual erosion of the weathering crust in the source areas of the clastic material. Inversion of the weathering profile during erosion is manifested geochemically in a decrease in the Al2O3/Na2O ratio and an increase in the SiO2/Al2O3, Na2O/K2O and K2O/TiO2 ratios from the base to the top of the studied part of the Sokolov Formation. The amounts of trace elements (La, Ce, Nb, Zr, Cr, V, Sn) also decrease in the same direction. On the other hand, the amounts of Rb and Sr increase. The organic matter of the upper part of the Sokolov Formation consists primarily of Types I and II kerogen. Only near the base of the studied part of the formation, i.e., in the coal stringer, kerogen of Type III prevails. The extremely low degree of thermal maturity permits determination of the source of the organic matter and characterization of its accumulation environment. The organic material in the sediments is predominantly of algae origin. Relatively high amount of pentacyclic triterpanes of the hopane series indicates either the occurrence of cyanobacteria as primary producers or bacterial reworking during sedimentation and diagenesis. Organic matter accumulated under the conditions of a fresh-water lake or lake with slightly elevated salinity, in a dysoxic aqueous environment. The alternation of organic carbon-rich layers with layers low in organic matter is explained in terms of changes in the degree of dysoxia of the aqueous environment and a variation in the intensity of oxidation and mineralization of the organic material.  相似文献   

3.
Summary Late-Variscan granitoid plutons in western Bohemia (Bor, Waidhaus-Rozvadov) have distinct petrographic, geochemical and isotopic features that suggest different magmatic evolutions. The Bor pluton comprises a suite of metaluminous tonalites and quartz diorites (Bor I), weakly peraluminous (monzo-)granites and granodiorites (Bor II) and medium-aluminous, late vein-forming leucomonzogranites (Bor III). The Waidhaus-Rozvadov pluton is strongly peraluminous, comprising a cordierite-biotite granitoid (CBG), the Rozvadov granite (ROG), the Bärnau granite (BÄG) and the subordinate, highly evolved Kreuzstein (Kíový kámen) granite (KG). Geochemical parameters and initial87Sr/86Sr ratios straddle the boundary between I- and S-type granites in the Bor pluton and are characteristic of purely S-type granites in the Waidhaus-Rozvadov pluton.The Bor II granitoids have been dated by the Rb-Sr whole-rock method at 341±17 Ma (ISr = 0.70724±0.00060). K-Ar biotite and muscovite ages of all units of the Bor pluton are mainly in the range 321-315 Ma. The K-Ar mineral ages are in good agreement with recently published U-Pb zircon data of these rocks. The different units of the Waidhaus-Rozvadov pluton have yielded less well-constrained Rb-Sr whole-rock ages, ranging from 313 to 300 Ma. However, the intrusion sequence is constrained by K-Ar muscovite ages (312-302 Ma), which define a systematic decrease towards the chemically more evolved granite types. Taken as a whole, it seems likely that the new radiometric ages characterize two temporally distinct periods of late-Variscan granitoid intrusion. The regional significance of these periods is emphasized by contemporaneous ages previously found in the adjacent northeastern Bavarian granitoids.The initial Sr and Nd isotope systematics indicate that the Bor and the WaidhausRozvadov plutons were derived from different source rocks. The Bor granitoids reflect the influence of less evolved crustal material which may have been similar to paragneisses of the Teplá-Barrandian region, including the Zone of ErbendorfVohenstrauß (ZEV). The Waidhaus-Rozvadov granitoids probably resulted from anatexis of rocks resembling surrounding Moldanubian paragneisses or metapelites. In addition, the two plutons exhibit poorly defined, opposite trends of Nd(T) variation which are ascribed to assimilation processes.
Petrogenese kontrastierender Granitplutone in Westböhmen (Tschechien)
Zusammenfassung Spätvariscische Granitplutone in Westböhmen (Bor, Waidhaus-Rozvadov) weisen petrographische, geochemische und isotopische Kontraste auf, die unterschiedliche magmatische Entwicklungen nahelegen. Der Bor Pluton umfaßt metalumine Tonalite und Quarzdiorite (Bor I), schwach peralumine (Monzo-)granite und Granodiorite (Bor II) und mäßig alumine, gangbildende Leukomonzogranite (Bor III). Der WaidhausRozvadov Pluton besitzt stark peralumine Zusammensetzung und läßt sich in einen Cordierit-Biotit Granitoid (CBG), den Rozvadov Granit (ROG), den Bärnau Granit (BÄG) und den stofflich hochentwickelten Kreuzstein (Kíový kámen) Granit (KG) untergliedern. Geochemische Parameter und initiale87Sr/86Sr-Verhältnisse liegen im Falle des Bor Plutons im Übergangsbereich zwischen I- und S-Typ Graniten und im Falle des Waidhaus-Rozvadov Plutons im Bereich reiner S-Typ Granite.Die Bor II Granitoide wurden nach der Rb-Sr Gesamtgesteinsmethode auf 341±17 Ma (ISr = 0.70724±0.00060) datiert. K-Ar Biotit- und Muskovitalter der Bor Granitoide liegen zwischen 321 and 315 Ma. Die K-Ar Mineralalter stehen im Einklang mit den kürzlich publizierten U-Pb Zirkondaten dieser Gesteine. Die verschiedenen Teilintrusionen des Waidhaus-Rozvadov Plutons liefern weniger gut definierte Rb-Sr Gesamtgesteinsalter zwischen 313 and 300 Ma. Die Intrusionsabfolge läßt sich dennoch durch K-Ar Muskovitalter festlegen (312-302 Ma), die eine systematische Abnahme von den weniger zu den starker entwickelten Granittypen aufweisen. Als Ganzes betrachtet dokumentieren die neuen radiometrischen Daten zwei zeitlich voneinander getrennte spdtvariscische Intrusionsereignisse. Die regionale Signifikanz dieser Ereignisse wird durch eine analoge Altersverteilung in den benachbarten nordostbayerischen Granitoiden untermauert.Anhand der initialen Sr und Nd Isotopensystematik können für die Bor und Waidhaus-Rozvadov Plutone unterschiedliche Quellen abgeleitet werden. Die Bor Granitoide spiegeln den Einfluß von gering entwickelten krustalen Material wider, das ähnliche stoffliche Eigenschaften besaß, wie Paragneise des Teplá-Barrandiums und der Zone von Erbendorf-Vohenstrauss (ZEV). Die Waidhaus-Rozvadov Granitoide lassen sich als Derivate moldanubischer Paragneise and Metapelite oder vergleichbarer Gesteine auffassen. Die zwei Plutone weisen schwach ausgeprägte gegensätzliche Nd(T)-Variationen auf, was auf unterschiedliche Assimilationsprozesse zurückgeführt wird.


With 10 Figures  相似文献   

4.
Between 1993 and 2007, an estimated 2500-3000 individual moldavite pieces have been found in the Tertiary Cheb Basin, Western Bohemia. This identifies the area as the third most prominent source of Central European tektites, next to the South Bohemian and West Moravian strewn subfields. Basic macroscopic physical properties (weight, shape, color and sculpture) were evaluated for over 350 individual finds of tektites from 4 different localities in the Cheb Basin. All these properties are similar to those observed for the South Bohemian moldavites, particularly with respect of color and weight distribution. In total, 24 tektites from the Cheb Basin have been characterized chemically using electron microprobe. For comparison, a set of 17 moldavites from the South-Bohemian and Moravian strewn subfields was measured as well. Contents of major elements overlap between the two sample sets; the largest variation was observed for iron. The trends observed in the Harker plots, however, seem to differentiate several partial subgroups, some of them characteristic for Cheb tektites only. These results are also substantiated by cluster analysis, which reveals a tight group for most of the tektites from the Cheb Basin, forming two partial clusters. The rest of the Cheb moldavites cluster with the South Bohemian samples. Minor and trace elements were measured with an LA-ICP-MS technique; CI-normalized REE patterns compare well with those for other moldavites. Many tektites, both from Cheb and South Bohemia or Moravia, display considerable heterogeneity: they frequently show schlieren and fluidal fabric. Two samples of this kind from the Cheb Basin showed considerable enrichment in volatile elements (e.g., Zn and Cu), which is typical for Muong Nong-type Australasian tektites. Mössbauer spectroscopy confirmed the highly reducing character of 5 studied moldavites. Discovery of a new moldavite strewn subfield around Cheb substantiates the theory that moldavites were ejected from the Ries impact structure in a fan-shaped jet, although it is not clear yet if it was continuous or composed of individual rays. In addition, the chemistry of the Cheb moldavites indicates significant precursor material heterogeneity.  相似文献   

5.
We investigated moment tensors (MTs) of 70 events of the earthquake swarm which occurred in January 1997 in NW Bohemia. A refined location using the master-event procedure shows that all the foci clustered in a volume of less than 0.5 km3 comprising two compact clusters—the southern and northern ones. The results of single-source, absolute-moment tensor inversion of the P- and SH-peak amplitudes reveal two types of the source mechanisms, A and B in our denotation, which dominated in the swarm. Type A implies an oblique normal faulting with a nearly pure double-couple (DC) source. For the B type, an oblique-thrust faulting and a combined source [double-couple combined with the isotropic (ISO) and compensated linear-vector dipole (CLVD) components] are typical. Magnitudes of the non-double-couple components of MT appear unrelated to the ML magnitude of the event. The proximity of hypocentres of A and B events guarantees the non-double-couple source mechanisms of the B events not to be an artefact of a mismodelling of the medium. To exclude finiteness of the focus or station-site effects as possible causes of spurious non-double-couple components of MTs of the B events, the residuals of the peak amplitudes across the set of the B events were analysed and the jack-knife test was applied. The A and B events separate in time and space. Consequently, three major phases of swarm activity can be distinguished. In the first, only the southern cluster was active and A events prevailed, while B events dominated in the northern cluster in the third phase. Both A and B events occurred (the former in the southern cluster, the latter in the northern one) during the second phase. The initiation of the B events in the northern cluster are reflected in a pronounced increase in the non-double-couple components of the MTs, which points to tensile-source mechanisms as a consequence of a hypothesised fluid injection.  相似文献   

6.
This paper illustrates the response of a fluvial depositional system to the interplay between peat compaction and clastic sediment supply, at a range of spatial and temporal scales, as documented by extensive exposures in an open-cast mine in the Most Basin, part of the Oligo-Miocene Ohře Rift (Eger Graben) basin system in the Czech Republic. The Most Basin is characterized by the occurrence of a number of phenomena resulting from syn- and post-depositional interactions between clastic sedimentary systems and the underlying accumulation of organic material that was the precursor of the main lignite seam of up to 45 m thickness. The studied strata are interpreted as deposits of an avulsive, mixed-load fluvial system. The large-scale depositional architecture documents an existence of at least five stratal packages up to 1500 m wide and up to several tens of metres thick, representing a record of long-term evolution of a clastic floodplain bordered by accumulating peat. Within each of the packages, several small-scale channel-belts were documented. Individual packages are separated by carbonaceous mudstones indicating a period of reduced clastic input and interpreted as due to avulsion of the fluvial channels out of the floodplain limit. Two main, mutually linked, processes controlled the evolution of the studied fluvial system: (i) syndepositional compaction of the underlying peat and (ii) avulsions of the channels away from the original floodplain, resulting in formation of a new floodplain. The processes which caused the channels of the Hrabák fluvial system to reach the avulsion threshold were: (i) decrease of rate of creation of accommodation leading to increased sinuosity and thus to a decreased channel slope, and (ii) cross-floodplain tilting of the channel belt caused by differential compaction of underlying organic-rich substratum.  相似文献   

7.
The interplay between fracture propagation and fluid composition and circulation has been examined by deciphering vein sequences in Silurian and Devonian limestones and shales at Kosov quarry in the Barrandian Basin. Three successive vein generations were recognised that can be attributed to different stages of a basinal cycle. Almost all generations of fracture cements host abundant liquid hydrocarbon inclusions that indicate repeated episodes of petroleum migration through the strata during burial, tectonic compression and uplift.The earliest veins that propagated prior to folding were displacive fibrous “beef” calcite veins occurring parallel to the bedding of some shale beds. Hydrocarbon inclusions within calcite possess homogenisation temperatures between 58 and 68 °C and show that the “beef” calcites originated in the deeper burial environment, during early petroleum migration from overpressured shales.E–W-striking extension veins that postdate “beef” calcite formed in response to Variscan orogenic deformations. Based on apatite fission track analysis (AFTA) data and other geological evidence, the veins probably formed 380–315 Ma ago, roughly coinciding with peak burial heating of the strata, folding and the intrusion of Variscan synorogenic granites. The veins that crosscut diagenetic cements and low-amplitude stylolites in host limestones are oriented semi-vertically to the bedding plane and are filled with cloudy, twinned calcite, idiomorphic smoky quartz and residues of hardened bitumen. Calcite and quartz cements contain abundant blue and blue–green-fluorescing primary inclusions of liquid hydrocarbons that homogenise between 50 and 110 °C. Geochemical characteristics of the fluids as revealed by gas chromatography–mass spectrometry, particularly the presence of olefins and parent aromatic hydrocarbons (phenonthrene), suggest that the oil entrapped in the inclusions experienced intense but geologically fast heating that resulted in thermal pyrolysis of its hydrocarbons. This implies that the organic fluids in the fractures may have been partly influenced by heating associated with igneous intrusions that are hidden below the surface.Subvertical N–S-striking veins represent the most recent fracturing event(s). Some of these veins are only a few millimeters thick and sparsely mineralised with thin leaf-like quartz crystals that contain tiny blue and yellow–orange-fluorescing hydrocarbon inclusions. Most of the N–S veins, however, occur as thick calcite veins that generally crystallised at 70 °C or less from H2O–NaCl solutions of variable salinity with admixture of petroleum. The origin of these fluids is interpreted in terms of deeply circulating meteoric waters that partially mixed with deep basinal fluids. Wider structural considerations combined with fission-track analysis of adjacent host sediments suggest that N–S veins formed during post-Mesozoic uplift of the area, probably in response to major Tertiary Alpine deformations transmitted far into the Bohemian Massif.  相似文献   

8.
The scientific borehole Baden-Sooss penetrates a succession of Badenian (Langhian, Middle Miocene) sediments at the type locality of the Badenian, the old brickyard Baden-Sooss in the Vienna Basin. The sedimentary succession of the 102-m-cored interval consists of more than 95% bioturbated, medium-to-dark gray marly shales with carbonate contents between 11 and 25% and organic carbon contents between 0.35 and 0.65%. Biostratigraphic investigations on foraminifera (mainly lower part of Upper Lagenid Zone) and calcareous nannoplankton (standard zone NN5) indicate an early Badenian (Langhian) age. Cycles in carbonate content, organic carbon content, and magnetic susceptibility have been identified by power spectra analysis. Correlations between the three variables are extremely significant. Using cross-correlation, periods around 40 m correlate significantly with the 100 kyr−1 eccentricity cycle, the ∼20 m periods with the obliquity cycle, and the 15 to 11-m periods with both precession cycles. Wavelet transformation and decomposition of composite periodic functions were used to obtain the position of the cycle peaks in the profile. Cross-correlation with orbital cycles (La2004) dates the Baden-Sooss core between −14.379 ± 1 and −14.142 my ± 9 kyr.  相似文献   

9.
The origin of sulphates in sulphate-rich efflorescences on quartz sandstones with a clay matrix, exposed in rural areas of the Czech Republic is interpreted, based upon an isotopic study of S and O. Sulphates such as gypsum and/or alums exhibit δ34S ranging from +1.3 to +6.1‰ and δ18O from +5.3 to +8.8‰. The low variability of S and O isotopes indicates a common source of the sulphur and a similar mode of sulphate formation. Atmospheric sulphates with a similar isotopic signature occur in the area, due to the combustion of sulphurous coal in power plants, located a few tens of kilometres from the sampling points. The sulphates crystallize from supersaturated pore waters that represent atmospheric precipitation, rich in sulphates, having percolated through the porous sandstone system. The previously proposed model of efflorescence growth (that it is due to the oxidation of pyrite) can be excluded, due to both the rare occurrence of pyrite and also to its different isotopic signature (δ34S about −22‰). Although gypsum prevails in the central and eastern part of the studied area, the north and north-west of the Bohemian Cretaceous Basin (the most polluted region) exhibits a significant presence of alums (NH4 + or K+−NH4 +-rich). Formation of alums can be explained by the partial dissolution of clay minerals or feldspars present in the sandstone matrix. Release of alumina from these phases is facilitated by the low pH of the precipitation (pH 4–4.5) and also locally by organic acids, traces of which were found in the studied efflorescences by the use of infrared spectroscopy.  相似文献   

10.
11.
The Guri limestone Member of the Mishan Formation in the Zagros Basin consists of thick bedded limestone bearing benthic foraminifera and oyster shells. Seven species of Ostreidae and Gryphaeidae were identified as belonging to four genera (Crassostrea, Cubitostrea, Ostrea, and Hyotissa), i.e., Cubitostrea frondosa, Ostrea (Cubitostrea) dubertreti, Cubitostrea digitalina, Crassostrea gryphoides, Hyotissa virleti, Ostrea vesitata, and Ostrea plicatula. These fossils are reported for the first time from Iran. Miocene deposits in the studied area contain a rich benthic foraminiferal fauna dominated by Pseudotaberina, Meandropsina, Miogypsina, Flosculinella, Borelis, and other larger benthic foraminifera. We assign these sediments to a Burdigalian age based on Borelis melo curdicaBorelis melo melo Assemblage Zone. Paleoecological considerations also revealed that the beds were deposited in a near-shore non-agitated and shallow-water environment with moderate to low sedimentation rate. The studied oysters are located in one of more important paleogeographic settings in the world and very similar to many other Tethyan regions. The presence of these oysters suggests that the Zade Mahmud area located at margins of a sea way that connected the north and south of Zagros Basin during Burdigalian.  相似文献   

12.
Zircon ages are reported for three Moldanubian amphibolite grade orthogneisses from the southern Bohemian Massif obtained by conventional U/Pb analyses. For two of these orthogneisses, conventional U/Pb data are supported by ion microprobe single zircon ages or single grain evaporation data. The amphibolite grade orthogneisses, occurring in three small tectonic lenses within the Varied Group close to the South Bohemian Main Thrust, are of tonalitic, granodioritic or quartz dioritic composition.Conventional bulk size fraction and ion microprobe analyses of nearly euhedral zircons from a metatonalite, erroneously interpreted as a metagreywacke in a previous study, yielded an upper Concordia intercept age of 2048 ± 12 Ma. The well preserved euhedral grain shapes of the zircons suggest crystallization from a magmatic phase, and the upper Concordia intercept age is now interpreted as reflecting a magmatic event at that time. The age of this rock is compatible with the conventional zircon data and the (207Pb/206Pb)* single grain evaporation result from two further orthogneisses providing intrusion ages of 2 060 ± 12, 2 104 ± 1 and 2 061 ± 6 Ma, respectively. For one sample a concordant U/Pb age for sphene of 355 ± 2 Ma defines the age of amphibolite facies metamorphism. The upper Concordia intercept ages of three orthogneisses constitute the first direct evidence for the presence of early Proterozoic crust under the supracrustal cover in the southern part of the Bohemian Massif. Correspondence to: J. I. Wendt  相似文献   

13.
Oligocene–Miocene chronostratigraphic correlations within the Paratethys domain are still highly controversial. This study focuses on the late Early Miocene of the Swiss and S-German Molasse Basin (Late Burdigalian, Ottnangian–Karpatian). Previous studies have published different chronologies for this time interval that is represented by the biostratigraphically well constrained Upper Marine Molasse (OMM, lower and middle Ottnangian), Upper Brackish Molasse (OBM, Grimmelfingen and Kirchberg Formations, middle and upper Ottnangian to lower Karpatian, MN 4a–MN 4b) and Upper Freshwater Molasse (OSM, Karpatian–Badenian, MN 5). Here, we suggest a new chronostratigraphic framework, based on integrated magneto-litho-biostratigraphic studies on four sections and three boreholes. Our data indicate that the OBM comprises chrons 5D.1r and 5Dn (Grimmelfingen Fm), chron 5Cr (lower Kirchberg Fm) and the oldest part of chron 5Cn.3n (upper Kirchberg Fm). The OSM begins during chron 5Cn.3n, continues through 5Cn, and includes a long reversed segment that can be correlated to chron 5Br. The OMM-OSM transition was completed at 16.0 Ma in the Swiss Molasse Basin, while the OBM-OSM changeover ended at 16.6 Ma in the S-German Molasse Basin. As the lower Kirchberg Fm represents a facies of the Ottnangian, our data suggest that the Ottnangian–Karpatian boundary in the Molasse Basin is approximately at 16.8 Ma, close to the 5Cr–5Cn.3n magnetic reversal, and thus 0.4 Myr younger than the inferred age of 17.2 Ma used in recent Paratethys time scales. Notably, this would not be problematic for the Paratethys stratigraphy, because chron 5Cr is mainly represented by a sedimentation gap in the Central Paratethys. We also realise, however, that additional data is still required to definitely solve the age debate concerning this intriguing time interval in the North Alpine Foreland Basin. We dedicate this work to our dear friend and colleague Jean-Pierre Berger (8 July 1956–18 January 2012).  相似文献   

14.
Although no commercial oil or gas occurrences have been found in the Barrandian Basin, residual oils and petroleum inclusions give evidence about the petroleum history of this Lower Palaeozoic Basin. Petroleum inclusions are hosted in six generations of calcite and quartz cements that can be attributed to different stages of a basinal cycle and associated diagenetic events. They were analysed using an on-line crushing and an off-line crush-and-leach approach. Five different groups (PI-A to PI-E) and intermediate mixtures (PI-M) could be differentiated based on the relative distribution of n-alkanes. All oils had a calculated aromatic maturity Rc ranging between 0.9 and 1.6%. PI-A shows a molecular weight maximum in the range of n-C8–11 with a constant attenuation towards higher carbon numbered n-alkanes. This distribution is interpreted as the pristine precursor oil for other petroleum inclusion groups. PI-B has a maximum weight abundance at n-C15–20. The genetic relationship between PI-B and PI-A can tentatively be explained by mixing effects or by gas stripping. PI-C is bimodal and characterised by a molecular weight maximum at n-C32–34, and also a molecular weight maximum at n-C15–20 similar to that of group PI-B. PI-D shows a normally distributed molecular weight maximum in the range n-C25–28 and is interpreted as a wax precipitate from ascending gas saturated in n-alkanes. PI-E contains predominantly gaseous compounds with only a few higher hydrocarbons. Thompson's aromaticity values are elevated for condensates of group PI-E, and also for group PI-C that is dominated by long-chained n-alkanes. This gives evidence that fault-bound petroleum migration in the Barrandian Basin was associated with evaporative fractionation for group PI-C and PI-E. Samples of group PI-E yielded gas-range compounds only, and all come from a last generation of vein-filling whitish calcite that was formed in a late uplift phase of the basin. For other petroleum inclusion groups, only a vague preferential occurrence in specific mineralisation phases or stratigraphic intervals of the host rock has been found. This reflects the predominance of fracture-bound migration in the Barrandian Basin. Aromatic maturity values also showed no correlation between either crystal type or PI-group. In six of the investigated petroleum inclusion samples alk-1-enes are present. These terminal olefins are interpreted to be the result of the natural pyrolysis of petroleum due to the intrusion of volcanic dykes or hydrothermal processes. An artificial generation of olefins during sample work-up and analysis is unlikely. The preservation of alk-1-enes from Palaeozoic times was possible due to the protecting environment of petroleum inclusions.  相似文献   

15.
Nearly 50 sections through the Llandovery and Wenlock black shales of the Barrandian area (Bohemia) have been examined bed by bed. This has made possible the compilation of an improved and well defined graptolite zonal scheme with much new biostratigraphic data included. A total of 268 graptolite species and subspecies have been found. Their stratigraphic distribution allows the recognition of 27 graptolite zones: ascensus–acuminatus, vesiculosus, cyphus, triangulatus–pectinatus, simulans, convolutus, sedgwickii, linnaei, turriculatus, crispus, griestoniensis, tullbergi, spiralis, grandis, insectus, centrifugus, murchisoni, riccartonensis, dubius, belophorus, rigidus, ramosus–perneri, lundgreni, parvus, nassa–frequens, praedeubeli–deubeli, ludensis, and several subzones. The biozones are defined by the vertical ranges of their ‘index’ species and are characterized by rich accompanying associations. The zonal scheme is correlated with graptolite sequences elsewhere.  相似文献   

16.
The paper analytically discusses certain palaeoecological criteria in the reconstruction of Lower Miocene (Aquitanian-Burdigalian) palaeobiogeography of the Indian subcontinent. The period is characterised by major marine transgressions and a prolific marine invertebrate and terrestrial vertebrate faunas. Faunal affinities of molluscs from western (Sind-Baluchistan) and eastern (Garo Hills) sectors are distinct and different. Molluscs of Garo Hills show affinity to Burmese species, whereas Sind-Baluchistan species shows similarity to that of the Mediterranean region. Marine molluscs resemble with the present-day taxa of the Arabian Sea and Bay of Bengal, where more than 35% species are common. This similarity is also evidenced by marine elasmobranchs, where approximately 33% species and 86% genera are similar to that of the Recent taxa. Terrestrial mammals show an intermingling of southern U.S.S.R. and African forms along with the presence of probably some groups belonging to the Indian subcontinent.Angiosperms are the dominant group. The Lower Miocene floras of the eastern and the western sectors are entirely different. The palm,Sabal major andPinus are reported from various localities. The climate in the western sector and South India was tropical, whereas in the eastern sector, it was variable.The Lower Miocene period is also marked by the contraction of Sindhu Sea, Bangla Sea and the Burmese Gulf southwards resulting in the final disappearance of the sea by the Pliocene.
Zusammenfassung Die Paläobiogeographie des unteren Miocän (Aquitan-Burdigal) läßt sich auf dem indischen Subkontinent aus den palökologischen Daten rekonstruieren. Zu dieser Zeit gab es viele marine Invertebraten und terrestrische Vertebraten-Faunen, die große marine Transgression anzeigen. Die Mollusken des Westens (Find-Baluchistan) und Ostens (Garo-Gebirge) sind unterschiedlich. Die Mollusken des Garo-Gebirges sind mit den Spezies von Burma verwandt. Dagegen sind die Faunen von Sind-Baluchistan für die mediterrane Faunenprovinz typisch. Die marinen Mollusken sind verwandt mit den Faunen des Arabischen Meeres und der Bucht von Bengalen; etwa 35% der Spezies sind gleich. Von den marinen Elasmobranchien sind ungefähr 33 % Spezies und 86% Genera gleich wie man sie in den rezenten Faunen findet. Terrestrische Sänger zeigen eine Mischung von südlicher U.S.S.R. und Afrika mit einigen Teilen des Indischen Subkontinentes.In den Pflanzen-Gruppen herrschen die Angiospermen vor. Die Untermiocän-Flora der östlichen und westlichen Gebiete ist ganz unterschiedlich. Der Palme, dieSabal Major undPinus sind aus verschiedenen Lokalitäten bekannt. Das Klima im Westen und im Süden Indiens war tropisch, im Osten dagegen war es wechselfeucht.Das Untermiocän-Meer im Gebiet Sind, Bangladesh und Burma verschwindet vor dem Pliozän.

Résumé Cet article analyse certains critères paléoécologiques dans la reconstitution de la paléogéographie du Miocène inférieur (Aquitanien-Burdigalien) de l'Inde subcontinentale. La période est caractérisée par de grandes transgressions marines et par des faunes abondantes d'invertébrés marins et de vertébrés terrestres. Les affinités fauniques des mollusques sont différentes dans les secteurs occidentaux (Sind-Baluchistan) et orientaux (Garo Hills). Les mollusques des Garo Hills montrent des affinités avec les espèces de Burma, tandis que les espèces de Sind-Béloutchistan montrent des similitudes avec celles de la région méditerranéenne. Les mollusques marins ont des ressemblances avec les taxons actuels de la Mer d'Arabie et du Golfe du Bengal, où plus de 35% des espèces sont les mÊmes. Cette similarité vaut aussi pour les élasmobranches marin, dont 33% des espèces et 86% des genres ressemblent aux taxons récents. Les mammifères terrestres montrent un mélange de formes du sud de l'U.S.S.R. et de formes africaines, allant de pair avec la présence de certains groupes probables appartenant au sous-continent indien.Les angiospermes forment le groupe dominant. Les formes du Miocène inférieur des secteurs orientaux et occidentaux sont entièrement différentes. Le palmier, le grand Sabal et le pin, sont connus dans différentes localités. Le climat dans le secteur occidental et dans l'Inde méridionale était tropical, tandis que dans le secteur oriental, il était variable.La période du Miocène inférieur est également marquée par le rétrécissement de la Mer de Sindhu, de la Mer de Bangla et du Golfe de Burma vers le sud, avec comme résultat la disparition finale de la mer au Pliocène.

(Aquitanian Nurdigalian) . . (Sind- Beluchistan) (Garo Hills) . , . : 35% . Elasmobranchs 33 % 86 % . , . . , Sabal major . , , , , , — . Sindhu, .
  相似文献   

17.
18.
Pyrenean debris dispersed in relation to the Miocene tectonic phase filled the northern part of the Ebro basin. In the studied area (50 km south of Pamplona) the Miocene sediments are represented by fluviatile sequences consisting of flood basin and point-bar deposits forming fining-upward cycles. The point-bar character of part of these sediments is not only evidenced by the internal sedimentary structures, but also by the fact that the corresponding meander bends, about 200 m in radius, are clearly visible on aerial photographs. In this way a unique opportunity is given to compare directly the vertical profile and the surface pattern of ancient small size point bars. The internal structure consists of many imbricated and concentrically arranged bundles corresponding to the accretional topography of the point bar. The separation planes between the bundles are erosional and dip toward the channel axis. The internal structure of each bundle is festoon mega-cross-stratification whose direction points toward the convex bank, away from the channel axis. The resulting structure resembles the Epsilon cross-stratification of Allen (1965a) and its origin is the same as postulated by Allen for this kind of cross bedding.  相似文献   

19.
Stromatolites and cryptalgal laminites are described from the Lower Fars Formation of Middle Miocene age from northern Iraq. The Lower Fars is comprised of many cycles of the sequence marl, limestone, gypsum. The microstructures of the stromatolites are described and compared with those of Recent algal mats. An intertidal depositional environment is indicated by the features of the cryptalgal limestones and by the presence of calcite pseudomorphs after gypsum. The significance of this interpretation in terms of Lower Fars sedimentation is discussed. It is concluded that the sulphate horizons formed in a supratidal setting and that the cycles resulted from repeated sabkha progradation.
Zusammenfassung Charakteristisch für die untere Fars-Formation (Mittel-Miozän) im Nord-Irak sind Stromatolithe und kryptoalgische Plättchen. Das untere Fars wird aus zahlreichen Zyklen von Mergel, Kalk und Gips aufgebaut. Die Mikrostrukturen der Stromatolithe werden mit heutigen Algenrasen verglichen. Ein Ablagerungsraum in der intertidalZone ist durch die Merkmale des kryptoalgischen Kalkes und die Kalzit-Pseudomorphosen nach Gips angedeutet. Der Schluß folgt, daß die Sulphat-Horizonte im Supratidal entstanden und daß die Zyklen durch wiederholtes Sabkhawachstum entstanden sind.

Résumé Sont décrites ici les stromatolites et les laminites cryptalgaires de la formation du Fars Inférieur d'âge Miocène Moyen du nord de l'Irak. Les Fars Inférieur comprend beaucoup de cycles formés de marne, calcaire, gypse. Les microstructures des stromatolites sont décrites et comparées avec celles des mattes algaires récentes. Un milieu de depôt intertidal est indiqué par les caractères des calcaires cryptalgaires et par la présence de pseudomorphoses de gypse en calcite. On discute l'importance de cette interprétation en termes de sédimentation du Fars Inférieur. En conclusion: les horizons sulfatés sont formés dans un emplacement supratidal et les cycles sont le résultat d'une progradation répétée de sabkha.

, , . , . , c . , , . , , sabkha.
  相似文献   

20.
The space/time evolution of the Umbria-Romagna-Marche domains of the northern Apennine Miocene foredeep is proposed. In this period, the turbidite siliciclastic sedimentation is represented mainly by the Miocene Marnoso-Arenacea Formation, which generally ends with mainly marly deposits. From the internal Apennine sectors (Umbria-Romagna domain) to the external Adriatic Margin (Marche domain) the siliciclastic succession overlies hemipelagic marly deposits (Schlier Formation). The whole depositional area can be considered as a single wide basin with depocenter or main sedimentation areas progressively migrating eastwards. This basin is characterized by some morphological highs which did not constitute real dams for the sedimentary flows (turbidity currents). Multiple feeding (arkose, litharenites, calcarenites) from different sources is related to palaeogeographical and palaeotectonic reorganization of the most internal, previously deformed, Apennine areas. The activation of the foredeep stage is marked by the beginning of the siliciclastic sedimentation (Late Burdigalian in the most internal sector). This sedimentation ends in the most external sector in the Early Messinian, pointing to a depositional cycle of about 9?C10?Ma. The diachronism of the base of the siliciclastic deposition proves to be almost 5?Ma. The syn-depositional compressional deformation, which shows a marked diachronism, affected the internal area of the foredeep in the Early-Middle Serravallian, and progressively migrated up to Late Miocene, involving more and more external sectors. The deformed siliciclastic sedimentary wedge constitutes an orogenic pile incorporated in the Apennine Chain, represented by different tectonic elements superimposed by means of NE-vergent thrusts. The main stratigraphic and tectonic events of the Toscana-Romagna-Marche Apennines are presented in a general framework, resulting also in a terminological revision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号