首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— The Cerro los Calvos meteorite is a single stone of 68.5 g found in the Nuevo Mercurio strewn field of Zacatecas, Mexico (24°20′N, 102°8′W). It is an unusual H4 chondrite. Its olivine (Fa12.5) and orthopyroxene (Fs 11.7, Wo 0.8) are reduced relative to typical H chondrites. The La Banderia meteorite of 54.3 g from the same vicinity is an LL5 chondrite of shock classification e.  相似文献   

2.
Abstract— Following a brilliant daylight fireball at 10:10 a.m. (local time) on 30 September 1984, a single stone weighing 488.1 grams was recovered from Binningup beach (33°09′23″S, 115°40′35″E), Western Australia. Data from 23 reported sightings of the fireball indicate an angle of trajectory 20–40° from the horizontal, a flight-path bearing N210°E and an end-point (ca. 32°39′S, 115°54.5′E) at a height of ~20–30 km. A recrystallized chondritic texture and the presence of olivine and low-Ca orthopyroxene with compositions of Fa18.4 (PMD 1.1)and Fs16.1 (PMD 1.1), respectively, show that Binningup is a typical member of the H-group of ordinary chondrites. Uniform mineral compositions and the presence of generally microcrystalline plagioclase feldspar indicate that the meteorite belongs to petrologic type 5. Pervasive fracturing of silicates suggests mild pre-terrestrial shock loading. Measurements (dpm kg?1) of cosmogenic radionuclides including 22Na (61 ± 5), 26Al (49 ± 3) and 54Mn (66 ± 10) indicate a normal history of irradiation.  相似文献   

3.
Maralinga,a metamorphosed carbonaceous chondrite found in Australia   总被引:1,自引:0,他引:1  
Abstract— The Maralinga meteorite was found near the village of Maralinga, South Australia (30°18′S, 131°16′E) in 1974, but was not recognized as a meteorite until 1989. One weathered individual was recovered with a total mass of 3.38 kg. The bulk composition and petrography of Maralinga indicate that it is a metamorphosed (petrographic type 4) carbonaceous chondrite with major similarities to the Vigarano-subtype. However, recent trace element data from the literature suggest that Maralinga should be included with the CK (Karoonda-type) carbonaceous chondrites. We classify Maralinga as an anomalous CK4 chondrite because of its abundant chondrules and refractory inclusions relative to other known members of the CK group. Maralinga contains homogeneous silicates, including Ni-bearing olivines (Fa34), high-Ca clinopyroxene, and rare orthopyroxene. Plagioclase is chemically heterogeneous and falls into two distinct compositional groups one of ~ An20 and an ~ An80 group. Highly oxidizing conditions during metamorphism of Maralinga are indicated by the abundance of magnetite and the paucity of Fe-Ni metal.  相似文献   

4.
Chromites from Middle Ordovician fossil L chondrites and from matrix and shock‐melt veins in Catherwood, Tenham, and Coorara L chondrites were studied using Raman spectroscopy and TEM. Raman spectra of chromites from fossil L chondrites showed similarities with chromites from matrix and shock‐melt veins in the studied L chondrite falls and finds. Chromites from shock‐melt veins of L chondrites show polycrystallinity, while the chromite grains in fossil L chondrites are single crystals. In addition, chromites from shock‐melt veins in the studied L chondrites have high densities of planar fractures within the subgrains and many subgrains show intergrowths of chromite and xieite. Matrix chromite of Tenham has similar dislocation densities and planar fractures as a chromite from the fossil meteorite Golvsten 001 and higher dislocation densities than in chromite from the fossil meteorite Sextummen 003. Using this observation and knowing that the matrix of Tenham experienced 20–22 GPa and <1000° C, an upper limit for the P,T conditions of chromite from Golvsten 001 and Sextummen 003 can be estimated to be 20–22 GPa and 1000° C (shock stage S3–S6) and 20 GPa and 1000° C (S3–S5), respectively, and we conclude that the studied fossil meteorite chromites are from matrix.  相似文献   

5.
Abstract— A meteorite fall was observed on 1989 December 29 in the vicinity of Bawku, North Ghana (11°05′N, 0°11′W). Two fragments (59 and 1498 g) of a stony meteorite were subsequently recovered. This is classified as an LL5 monomict breccia of shock category S2. The olivine and pyroxene compositions are Fa26.8 and Fs22.6 respectively.  相似文献   

6.
Abstract— The structural states of sodic plagioclase crystals of ~50 μm in size from three H6, two L6, and one LL6 chondritic meteorites have been determined by measuring the Δ131 parameter with a Gandolfi camera after analyzing chemical compositions. The temperature for each sodic plagioclase crystal has been determined by plotting the Δ131 parameter, corrected for the influence of K, on the relation diagram between the Δ131 parameter and the temperature of synthesis of sodic plagioclase by Smith (1972). The temperature obtained is assigned to the crystallization temperature of sodic plagioclase, and the maximum plagioclase temperature for each meteorite can be assumed to correspond to the maximum temperature attained by each meteorite during metamorphism. The maximum metamorphic temperatures estimated are 725–742 °C for the H6 chondrites, 808–820 °C for the L6 chondrites, and 800 °C for the LL6 chondrite. These temperatures are lower than those based on Ca contents of clinopyroxenes (Dodd, 1981; McSween et al., 1988) but are consistent with those based on Ca contents of orthopyroxenes (McSween and Patchen, 1989; Langenhorst et al., 1995; Jones, 1997). The K content of sodic plagioclase correlates with the temperature obtained from the structural state. This positive correlation suggests that sodic plagioclase has formed in the course of equilibration processes of alkali elements in prograde metamorphism (i.e., during heating processes). The results of this study (i.e., the maximum metamorphic temperature of the H6 chondrites is lower than that of the L6 chondrites by ~80 °C, and meteorites of the same chemical group show very similar maximum metamorphic temperatures) are in accordance with the predictions of calculations based on the 26Al heat source and the onion-shell structure model of the parent bodies.  相似文献   

7.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   

8.
The Jezersko meteorite is a newly confirmed stony meteorite found in 1992 in the Karavanke mountains, Slovenia. The meteorite is moderately weathered (W2), indicating short terrestrial residence time. Chondrules in partially recrystallized matrix are clearly discernible but often fragmented and have mean diameter of 0.73 mm. The meteorite consists of homogeneous olivine (Fa19.4) and low‐Ca pyroxenes (Fs16.7Wo1.2), of which 34% are monoclinic, and minor plagioclase (Ab83An11Or6) and Ca‐pyroxene (Fs6Wo45.8). Troilite, kamacite, zoned taenite, tetrataenite, chromite, and metallic copper comprise about 16.5 vol% of the meteorite. Phosphates are represented by merrillite and minor chlorapatite. Undulatory extinction in some olivine grains and other shock indicators suggests weak shock metamorphism between stages S2 and S3. The bulk chemical composition generally corresponds to the mean H chondrite composition. Low siderophile element contents indicate the oxidized character of the Jezersko parent body. The temperatures recorded by two‐pyroxene, olivine‐chromite, and olivine‐orthopyroxene geothermometers are 854 °C, 737–787 °C, and 750 °C, respectively. Mg concentration profiles across orthopyroxenes and clinopyroxenes indicate relatively fast cooling at temperatures above 700 °C. A low cooling rate of 10 °C Myr?1 was obtained from metallographic data. Considering physical, chemical, and mineralogical properties, meteorite Jezersko was classified as an H4 S2(3) ordinary chondrite.  相似文献   

9.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

10.
The Galatia meteorite was found in August, 1971, approximately 7 km ENE of Galatia, Barton County, Kansas (98° 53′W., 38° 39.5′N). The single stone weighed 23.9 kg and is partially weathered. Olivine (Fa24.9) and pyroxene (Fs20.9) compositions indicate L-group classification, and textural observations indicate that the stone is of petrologic type 6. Galatia is similar in many respects to the Otis L6 chondrite (found 20 km to the west), but it does not have the brecciated structure of Otis and, thus, it is not part of the same fall.  相似文献   

11.
Abstract– A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro‐X‐ray diffraction (μXRD) to measure the full width at half maximum (FWHMχ) of peak intensity distributed along the direction of the Debye rings, or chi angle (χ), corresponding to individual lattice reflections in two‐dimensional XRD patterns. This μXRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ μXRD has been applied to polished thin sections and whole‐rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock‐induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted‐light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4–5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHMχ plotted against petrographic shock stage demonstrates positive linear correlation. FWHMχ ranges corresponding to shock stages were assigned as follows: S1 < 0.7°, S2 = 0.7–1.2°, S3 = 1.2–2.3°, S4 = 2.3–3.5°, S5 > 3.5°, S6—not measured. Slabs of Abee (EH impact‐melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using μXRD alone; FWHMχ values place both in the S2 range, consistent with literature values. Micro‐XRD analysis may be applicable to other shocked orthopyroxene‐bearing rocks.  相似文献   

12.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

13.
The Machinga meteorite fell in the Southern Province of Malawi on January 22, 1981, at approximately 1000 hours local time. The fall site is about 7.5 km SW of Machinga and has the co-ordinates 15° 12′44″ S., 35°14′32″ E. A single crusted mass weighing 93.2 kg was recovered. The Machinga meteorite is an L6 chondrite with olivine Fa24.5 and orthopyroxene Fs21.1. The silicates have a granular texture and the stone has been shocked.  相似文献   

14.
The Kramer Creek, Colorado, chondrite was found in 1966 and identified as a meteorite in 1972. Bulk chemical analysis, particularly the total iron content (20.36%) and the ratio of Fetotal/SiO2 (0.52), as well as the compositions of olivine (Fa21.7) and orthopyroxene (Fs18.3) place the meteorite into the L-group of chondrites. The well-defined chondritic texture of the meteorite, the presence of igneous glass in the chondrules and of low-Ca clinopyroxene, as well as the slight variations in FeO contents of olivine (2.4% MD) and orthopyroxene (5.6% MD) indicate that the chondrite belongs to the type 4 petrologic class.  相似文献   

15.
We report and describe an L6 ordinary chondrite fall that occurred in Ardón, León province, Spain (longitude 5.5605°W, latitude 42.4364°N) on July 9th, 1931. The 5.5 g single stone was kept hidden for 83 yr by Rosa González Pérez, at the time an 11 yr old who had observed the fall and had recovered the meteorite. According to various newspaper reports, the event was widely observed in Northern Spain. Ardón is a very well‐preserved, fresh, strongly metamorphosed (petrologic type 6), and weakly shocked (S3) ordinary chondrite with well‐equilibrated and recrystallized minerals. The mineral compositions (olivine Fa23.7±0.3, low‐Ca pyroxene Fs20.4±0.2Wo1.5±0.2, plagioclase An10.3±0.5Ab84.3±1.2), magnetic susceptibility (log χ = 4.95 ± 0.05 × 10?9 mkg?1), bulk density (3.49 ± 0.05 g   cm?3), grain density (3.58 ± 0.05 g   cm?3), and porosity (2.5 vol%) are typical for L6 chondrites. Short‐lived radionuclides confirm that the meteorite constitutes a recent fall. The 21Ne and 38Ar cosmic ray exposure ages are both about 20–30 Ma, similar to values for many other L chondrites. The cosmogenic 22Ne/21Ne ratio indicates that preatmospheric Ardón was a relatively large body. The fact that the meteorite was hidden in private hands for 83 yr makes one wonder if other meteorite falls may have experienced the same fate, thus possibly explaining the anomalously low number of falls reported in continental Spain in the 20th century.  相似文献   

16.
The Paris meteorite is one of the most primitive carbonaceous chondrites. It is reported to be the least aqueously altered CM chondrite, and to have experienced only weak thermal metamorphism. We have analyzed for the first time the amino acid and hydrocarbon contents of this pristine meteorite by gas chromatography–mass spectrometry (GC–MS). When plotting the relative amino acids abundances of several CM chondrites according to the increasing hydrothermal scale (petrologic subtypes), from the CM2.7/2.8 Paris to the CM2.0 MET 01070, Paris has the lowest relative abundance of β‐alanine/glycine (0.15), which fits with the relative abundances of β‐alanine/glycine increasing with increasing aqueous alteration for CM chondrites. These results confirm the influence of aqueous alteration on the amino acid abundances and distribution. The amino acid analysis shows that the isovaline detected in this meteorite is racemic (d /l  = 0.99 ± 0.08; l ‐enantiomer excess = 0.35 ± 0.5%; corrected d /l  = 1.03; corrected l ‐enantiomer excess = ?1.4 ± 2.6%). The identified hydrocarbons show that Paris has n‐alkanes ranging from C16 to C25 and 3‐ to 5‐ring nonalkylated polycyclic aromatic hydrocarbons (PAHs). The lack of alkylated PAHs in Paris seems to be also related to this low degree of aqueous alteration on its parent body. The extraterrestrial hydrocarbon content, suggested by the absence of any biomarker, may well have a presolar origin. The chemistry of the Paris meteorite may thus be closely related to the early stages of the solar nebula with a contribution from interstellar (molecular cloud) precursors.  相似文献   

17.
The Ijopega (Papua New Guinea) meteorite is a new H6 group chondrite fall which contains olivine (Fa 19.9 mole %), bronzite (Fs 17.8 mole %), plagioclase (An 12.1 Or 6.3 Ab 81.6 mole %), diopside, kamacite, taenite, troilite, chromite and whitlockite. The meteorite is extensively recrystallized and brecciated, and shows evidence of moderate shock deformation. Examination of Fe2+ and Mg partitioning between ortho- and clinopyroxene indicates a high equilibration temperature (940° or 880 °C). Chemical analysis shows the meteorite to be rich in S, containing about twice the average H-group abundance. Trace elements, including REE, are in accord with established H-group chondrite abundances.  相似文献   

18.
In Wisdom (2017), I presented new simulations of meteorite transport from the chaotic zones associated with major resonances in the asteroid belt: the ν6 secular resonance, the 3:1 mean motion resonance with Jupiter, and the 5:2 mean motion resonance with Jupiter. I found that the observed afternoon excess (the fact that approximately twice as many meteorites fall in the afternoon as in the morning) of the ordinary chondrites is consistent with chaotic transport from the 3:1 resonance, contradicting prior reports. Here I report an additional study of the transport of meteorites from ν6 secular resonance and the 3:1 mean motion resonance. I use an improved integration algorithm, and study the evolution of more particles. I confirm that the afternoon excess of the ordinary chondrites is consistent with transport from the 3:1 resonance.  相似文献   

19.
We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon‐bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334–1345 cm?1 and 1591–1619 cm?1. The full‐width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.  相似文献   

20.
The mineralogical and chemical compositions of meteorites from the Motta di Conti, Vercelli, Italy, shower (February 29, 1868) have been determined. Microprobe analyses, of olivine (Fa19,6) and orthopyroxene (Fs17,8), as well as the bulk chemical composition, particularly the ratios of SiO2/MgO (1.50), Fe°/Ni° (11.03), Fetotal/SiO2 (0.81), Fe°/Fetotal (0.70) and the content of Fetotal (28.60%) classify the meteorite as an H-group chondrite. The percentage of total metallic nickel-iron (22.06%) is somewhat higher than the average in H-group chondrites. The texture of our stone shows evidence of metamorphism. The integration between matrix and chondrules is advanced and may suggest a high petrographic grade, but the identification of several microscopic features (e.g. small grains of monoclinic twinned pyroxene, FeNi-FeS intergrowths, globules and mosaic) leads to the conclusion that a variety of petrographic types (4–6) are present. Metamorphic equilibration in chondrites is discussed and a preliminary hypothesis for H4–6 chondrites is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号