首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bouguer gravity is the combination of field sources in different depths. Based on the multi-scale analysis of the Bouguer gravity, we can get the gravity anomaly caused by the Moho undulation. This study presents the various orders of approximation of gravity anomaly in North China Craton (NCC), the possible source depths with radial logarithmic power spectrum, and the relationship between the deep structure and gravity anomaly. Furthermore, we discuss the isostatic compensation about the Moho depth from gravity and deep seismic sounding profiles (DSS). The results show that: (1) the fourth approximation could have resulted from the Moho undulation, (2) in contrast to the isostatic Moho, the inverted gravity Moho and the DSS Moho show that most of NCC has been isostatically compensated, and (3) the isostatic compensation rate has some close relation to the seismicity.  相似文献   

2.
By using moving average method to separate Bouguer gravity anomaly field in Sichuan-Yunnan region, we got the low-frequency Bouguer gravity anomaly field which reflects the undulating of Moho interface. The initial model is obtained after seismic model transformation and elevation correction. Then, we used Parker method to invert the low-frequency Bouguer gravity anomaly field to obtain the depth of Moho interface and crustal thickness in the area. The results show that the Qinghai-Tibet block in the northwest of the study area deepens and thickens from the edge to the interior, with the depth of Moho interface and the crust thickness of about 52~62km and 54~66km, respectively. The depth of Moho interface in Sichuan Basin is about 38~42km. In Sichuan-Yunnan block, the depth of Moho interface is about 42~62km from southeast to northwest. Beneath the West Yunnan block, west of the Red River fault zone, the Moho depth is about 34~52km from south to north. The Longmen Mountains and Red River fault zone are the gradient zone of the Moho depth change. Along the Red River fault zone, the depth difference of Moho interface is increasing gradually from north to south. No obvious uplift is found on the Moho interface of Panzhihua rift valley. The depth of Moho interface distribution in Sichuan and Yunnan is obviously restricted by the collision between the Indian plate and the Eurasian plate and the lateral subduction of the Indo-China peninsula. The mean square error of the depth of Moho interface is less than 1.7km between the result of divisional density interface inversion and artificial seismic exploration. At the same time, we compared the integral with divisional inversion result. It shows that:in areas where there is obvious difference between the crust velocity and density structure in different tectonic blocks, the use of high resolution seismic exploration data as the constraints to the divisional density interface inversion can effectively improve the reliability of inversion results.  相似文献   

3.
文中通过多源数据融合、模型构建、数据试验、二维离散小波变换和功率谱分析等方法获取了大别造山带东段深、浅部场源布格异常及其场源似深度,并结合地壳结构、地质构造、岩石圈有效弹性厚度和地震活动等资料,讨论了地壳深、浅部的结构特征及地震活动构造背景。结果表明,低频布格异常显示大别造山带东段与华北地块间深部构造缝合带在东部应位于青山-晓天断裂前缘,在落儿岭-土地岭断裂和商城-麻城断裂之间向N偏移至梅山-龙河口断裂之下,造山带南侧与扬子地块间深部构造缝合带位于襄樊-广济断裂以北约20km,造山带东侧与扬子地块间的深部构造转换带位于郯庐断裂带之下,造山带东段腹地显著的低频布格异常低值表明对应部位的莫霍面存在明显下凹,造山带内部的布格异常高梯度带表明其深部结构不完整;高频布格异常揭示肥中断裂、六安-合肥断裂、肥西-韩摆渡断裂和郯庐断裂带等主要断裂对地壳中上部密度结构的影响明显,落儿岭-土地岭断裂对地壳中上部密度结构的影响范围向N延伸至肥西-韩摆渡断裂前缘。结合地震活动资料进一步分析认为,大别造山带东段与华北地块在青山-晓天断裂前缘附近接触和相互作用,且大别造山带东段地壳深、浅部结构均不完整,不利于应力积累,趋向于在断裂交错的脆弱部位频繁释放应力,是霍山地区小地震活动频繁的主要原因。  相似文献   

4.
龙门山断裂带地壳密度结构   总被引:3,自引:1,他引:2       下载免费PDF全文
研究龙门山及邻区地壳密度结构对于认识该地区地震活动性具有重要意义.根据龙门山及邻区( 100°~105°E,28°~33°N)的布格重力异常资料,选取了跨越龙门山断裂带的6条重力测线,在深地震测深资料约束下,使用Geosoft软件分别反演出了龙门山地区地下的沉积层、康拉德界面和莫霍面的深度分布.研究结果表明:龙门山断裂带两侧的地壳结构明显不同,西面高原地区沉积层较薄,大部分为基岩出露;而东边盆地沉积层明显较厚,多在6km以上.莫霍面和康拉德面在两侧均相对平缓,康拉德面从东部的大约24km增加到青藏高原山区的35km左右;莫霍面深度从东部盆地的大约42km增加到西部青藏高原的67km左右.龙门山断裂带整体表现为一条近SN向的陡变重力梯度带,并在其地壳内各界面均发生错断,莫霍面和康拉德面错断距离分别达6 ~ 7km和3~ 5km.该区地壳的这种陡变和不均匀性是导致地震活动性强烈的主要原因之一.  相似文献   

5.
沂沭断裂带重力场及地壳结构特征   总被引:5,自引:2,他引:3  
沂沭断裂带为郯庐断裂带山东段,新构造运动显著,是华北地区的强震活动带之一。文中收集了该地区的布格重力数据,利用小波多尺度分析方法对重力场进行有效分离,研究区域地壳结构特征及断裂空间展布,并应用Parker变密度模型对区域莫霍面进行反演分析,得到以下几点结论:1)重力区域场显示,沂沭断裂带形成了NNE走向的大型重力梯度带,分隔了鲁西、鲁东地块,成为区域内重要的地球物理分界线。2)重力局部场显示,中上地壳结构复杂,沂沭带内部呈现两堑一垒的重力异常格局,5条主干断裂形成线性梯度带分布于东、西地堑内,鲁西块体的多条NW向活动断裂交切于沂沭断裂带,多数断裂只交切于西地堑,而蒙山山前断裂和苍尼断裂横穿沂沭断裂带;下地壳结构相对简单,发生明显的褶曲构造,表现出大规模高、低密度异常相间排列的典型特征。3)区域莫霍面形态东高西低,沂沭断裂带形成了莫霍面陡变带,造成了东西分异格局,潍坊东—莒县—临沂一线出现莫霍面上隆区,具有强震发生的深部孕震环境。4)区域内地震多发于高、低重力异常转化带之间,特别是活动断裂对应的重力梯度条带之上,地震的发生与断裂活动有着密切的关系,沂沭断裂带地震活动性最强,且东地堑强于西地堑。  相似文献   

6.
The spectral study of the Bouguer anomally map of Central India suggests an uplifted crust-mantle interface under the Mahandi graben. This study has delineated three subsurface levels of anomalous masses at the respective depths of 23 km, 8 km, and 2 km apparently representing the Moho, an intermediate discontinuity in the sialic part of the crust and the basement, respectively. Model study of the Bouguer anomaly along a profile suggests a typical continental graben type subsurface structure with a low density depression in the sialic part of the crust between 8 and 18 km supported by an elevated upper mantle of intermediate density (3.4 g/cm3) varying in depth from 25 km to 55 km. The depths of the inferred interfaces in case of Bundelkhand granite are 32 km, 11 km, and 1.5 km, which might represent the Moho, the base of intruded granite massif, and some shallow compositional variation. Similar studies in case of Vindhyan basin have brought out three discontinuities at the respective depths of 16 km, 6–4.5 km, and 2.4 km. The first horizon at the depth of 16 km probably represents the interface between the granitic and the basaltic part of the crust. The 6–4.5 km is the depth of the basement, with the 2.4 km interface separating Bijawar rocks from Vindhyans wherever they are present. A generalized inversion of a profile across a positive belt of Bouguer anomaly representing the subsurface Bijawar rocks support the above result.  相似文献   

7.
应用布格重力异常研究郯庐断裂构造   总被引:8,自引:1,他引:7       下载免费PDF全文
唐新功  陈永顺  唐哲 《地震学报》2006,28(6):603-610
使用布格重力资料对郯庐断裂带的中段部分(沂沭断裂带)进行了研究. 结果表明, 郯庐断裂带莫霍面及地壳内界面均发生错断,断裂带两侧地壳各界面起伏平缓. 该结果与前人的郯庐断裂带是切穿地壳的深大断裂的认识相一致. 在郯庐断裂带两侧,地壳结构明显不同,西侧沉积层较薄,平均在5 km以下;东侧多数在6 km以上;在断裂带中央沉积物最薄,大约为3~4 km. 断裂带东侧莫霍面埋深浅,大约为33~34 km;西侧莫霍面埋深明显增加,达到36~38 km.反映了莫霍面深度在断裂带附近整体是向西增加的. 郯庐断裂带在重力场分布中则表现为一条宽度较大的线性布格重力异常梯度带.   相似文献   

8.
东海及其邻域壳-幔结构与展布特征   总被引:5,自引:0,他引:5       下载免费PDF全文
莫霍面是地壳和上地幔的分界面,是个重要的密度界面,东海莫霍面的展布特征,对于研究东海深部构造具有重要意义.利用最新重力异常数据反演莫霍面深度,结合前人的莫霍面深度结果,分析东海及其邻域的壳-幔结构与展布特征.从莫霍面深度图可见东海及其邻域莫霍面起伏变化很大,深度在12~34 km之间变化,东海及其邻域地壳厚度为6~34km,东海陆架地区地壳厚度变化与大陆地区相比并不明显,显著减薄开始于冲绳海槽地区,琉球岛弧处地壳厚度明显再度增加,莫霍面呈现两凹两凸形态,认为东海及其邻域地壳自西而东从陆壳-过渡壳-洋壳逐渐过渡的.  相似文献   

9.
中国北部及其邻区地壳上地幔三维速度结构   总被引:6,自引:4,他引:6       下载免费PDF全文
本文利用中周期和长周期瑞利面波资料分别反演得到中国北部及其邻区的三维S波带度结构。结果表明,地壳中横向非均匀性非常明显,许多地区显示出构造活动的特征;上地幔速度结构的横向变化相对减小。研究区的地壳厚度从东向西逐渐增大,地壳平均速度分布的格局与地壳厚度分布大体一致。地壳厚度与地壳平均速度的空变带处与布格重力异常梯级带基本一致。从数据上看,地壳厚度远比地壳平均速度与布格重力异常的一致性程度高,因此可以  相似文献   

10.
The tectonic regime of Eastern Anatolia is determined by the Arabia-Eurasia continent-continent collision. Several dynamic models have been proposed to characterize the collision zone and its geodynamic structure. In this study, change in crustal thickness has been investigated using gravity, magnetic and topographic data of the region. In the first stage, two-dimensional low-pass filter and upward analytical continuation techniques were applied to the Bouguer gravity data of the region to investigate the behavior of the regional gravity anomalies. Next the moving window power spectrum method was used, and changes in the probable structural depths from 38 to 52 km were determined. The changes in crustal thickness where free air gravity and magnetic data have inversely correlated and the type of the anomaly resources were investigated applying the Euler deconvolution method to Bouguer gravity data. The obtained depth values are consistent with the results obtained using the power spectrum method. It was determined that the types of anomaly resources are different in the west and east of the 40° E longitude. Finally, using the obtained findings from this study and seismic velocity models proposed for this region by previous studies, a probable two-dimensional crust model was constituted.  相似文献   

11.
关于中国海陆莫霍面深度图编绘的思考   总被引:2,自引:1,他引:1       下载免费PDF全文
莫霍面是地壳和上地幔的分界面,是一个重要的密度界面.布格重力异常与莫霍面深度之间具有紧密的联系,利用重力异常反演莫霍面深度成是研究莫霍面深度和编制莫霍面深度图的主要手段之一.本文总结了前人编制莫霍图的方法和结果,并加以分析讨论.提出应用布格重力异常反演中国海陆莫霍面深度的方法与技术,并考虑到中国海、陆构造的一体性,进行海陆统一编图以展示莫霍面的海、陆演化与构造关系.  相似文献   

12.
本文提出一种基于重力/GPS联合观测数据计算垂向构造应力的新方法.计算步骤如下:(1)通过重力/GPS联合观测数据计算布格重力异常;(2)依据布格重力异常数据推算莫霍面深度;(3)依据GPS观测数据,通过均衡理论计算均衡面深度;(4)依据莫霍面与均衡面之间剩余物质(壳幔物质密度差)所承受的附加浮力,计算地壳承载的垂向构造应力.本文利用上述构造应力新算法,计算了巴颜喀拉块体东边界及周边地区垂向构造应力分布,发现龙泉山断裂带以东地区垂向构造应力基本为零,龙泉山断裂带与龙门山断裂带之间地区垂向构造应力为正值,巴颜喀拉地块东部垂向构造应力为负值.鲜水河断裂带东南段周边蓄积了-40~-50 MPa的垂向构造应力,且梯度变化剧烈;松潘高原蓄积的垂向构造应力大约为-10~-20 MPa,相对较小.  相似文献   

13.
黄海及邻区莫霍面起伏特征   总被引:2,自引:2,他引:0       下载免费PDF全文
针对地壳构造形成的动力学机制,在广泛收集区域地质、地质构造和地球物理等资料的基础上,着重对重力数据进行了数字化、坐标、重力公式、投影方式和比例尺的统一化处理,进而进行了网格化处理.为将区域异常和局部异常分离开来,以便以对深部构造的系统研究,笔者选取趋势分析法分别对研究区内预处理后的布格重力异常数据(Δg)进行了三维多项式迭代拟合计算,得到了区域布格重力异常二阶、五阶、十阶趋势分析结果.继而,利用二级近似公式迭代法对布格重力异常五阶趋势分析区域异常数据进行了三维运算处理,得到了黄海及周边地区的莫霍面埋深值.分析了黄海及邻区莫霍面起伏特征,并进行了深部构造区划,探讨了深部断裂构造与莫霍面起伏间的成因联系,为深部构造和活动断裂演化的地球动力学研究提供了依据.  相似文献   

14.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

15.
The first P-arrival-time data from 513 local earthquakes were analyzed to study lateral variation of the depth to the Conrad and Moho discontinuities beneath the Chugoku and Shikoku districts, southwest Japan, as well as to determine earthquake hypocenters and P-wave station corrections. The depth to the discontinuity was estimated by minimizing the travel-time residuals of more than 8700 first P arrivals observed at 55 seismic stations. The Conrad and Moho discontinuities are located within depth ranges of 15–25 km and 30–40 km, respectively. The Moho is deeper under the mountain area than under the Seto Inland Sea area, and especially deep under the Pacific Coast of the Shikoku district and the mountain area in the Chugoku district. The depth variation of the Moho is quite similar to the Bouguer gravity anomaly distribution and the lateral variations of the P-wave velocity. The deep Moho under the southern Shikoku is located at the portion in which the continental Moho under the island arc meets the oceanic Moho that is the boundary interface between the oceanic crust and the Philippine Sea (PHS) plate dipping toward the back arc. Although there are high mountains in the northern and middle Shikoku, the Moho is not so deep because subduction of the PHS plate prevents the Moho from getting deep, while the Moho is deep due to isostatic balance under the mountain area in the Chugoku district. In addition, we indicated the possibility that the upper boundary of the oceanic crust just above the high-velocity PHS plate is in contact with the deep Moho under the western Chugoku. The contact of the Moho with the oceanic crust can explain the markedly negative gravity anomaly observed in the western Chugoku and the later phase that appears just after the first P arrival from local earthquakes.  相似文献   

16.
The gravity response and crustal shortening in the Himalayan belt are modeled in detail for the first time in the NW Himalaya. The Bouguer gravity anomaly along a ~450-km-long (projected) transect from the Sub-Himalaya in the south to the Karakoram fault in the north across the Indus-Tsangpo Suture Zone is modeled using spectral analysis, wavelet transform and forward modeling. The spectral analysis suggests three-layer interfaces in the lithosphere at 68-, 34- and 11-km depths corresponding to the Moho, the Conrad discontinuity and the Himalayan decollement thrust, respectively. The coherence, admittance and cross spectra suggest crustal shortening because of convergence compensated by lithospheric folding at 536- and 178-km wavelength at the Moho and the upper-crustal level. An average effective elastic thickness of around 31 km is calculated using the coherence method. The gravity data are modeled to demarcate intracrustal to subcrustal regional thrust/fault zones. The geometrical constraints of these faults are obtained in the space scale domain using the wavelet transform, showing good correlation with the major tectonic boundaries. The crustal configuration along the transect shows how the Moho depth increases from 45 to 80 km towards the north with the locus of flexure of the Indian crust beneath the Higher Himalayan zone. The combination of forward modeling and wavelet analysis gives insight into the subsurface extent and geometry of regional structures across the NW Himalaya.  相似文献   

17.
The first P-arrival time data from local earthquakes are inverted for two-dimensional variation of the depths to the Conrad and Moho discontinuities in the Kyushu district, southwest Japan. At the same time, earthquake hypocenters and station corrections are determined from the data. The depths to the discontinuities are estimated by minimizing the travel time residuals of first P-arrival phases for 608 earthquakes observed at 57 seismic stations. In the land area of Kyushu, the Conrad and Moho discontinuities are located within the depth ranges of 16–18 and 34–40 km, respectively. The Conrad discontinuity is not as largely undulated as the Moho discontinuity. The depth to the Moho is deep along the east coast of Kyushu, and the deepest Moho is closely related to markedly low velocity of P wave. We regard the deepest Moho as reflecting the Kyushu–Palau ridge subducting beneath the Kyushu district, together with the Philippine Sea slab. In western Kyushu, the shallow Moho is spreading in the north–northeast–south–southwest direction in the Okinawa trough region. Based on the presence of low-velocity anomaly in three-dimensional velocity structure and seismogenic stress field of shallow crustal earthquakes, the shallow Moho is interpreted as being due to lower crustal erosion associated with a small-scale mantle upwelling in the Okinawa trough region. The velocity discontinuity undulation basically has insignificant effect on hypocenter determination of the local earthquakes, but the Moho topography makes changes in focal depths of some upper mantle earthquakes. The depth variation of the Moho discontinuity has a good correlation with the Bouguer gravity anomaly map; i.e., the shallow Moho of western Kyushu and the deep Moho of eastern Kyushu closely correlate with the positive and negative Bouguer gravity anomalies, respectively.  相似文献   

18.
基于EGM2008重力场模型计算获得了渭河盆地及邻区布格重力异常。采用小波多尺度分解方法对布格重力异常进行了4阶小波逼近和小波细节分解,同时基于平均径向对数功率谱方法定量化地计算出1~4阶小波细节和小波逼近所对应的场源平均埋深。结合区域地质和地震资料,对获得的重力场结果进行分析,得到如下结论:①鄂尔多斯地块、渭河盆地、秦岭造山带3个一级构造单元的布格重力异常之间存在明显差异;构造区内部重力异常也存在横向的显著差异。布格重力异常的走向、规模、分布特征与二级构造区及主要的断裂具有一定的对应关系。②渭河盆地及邻区布格重力异常1~4阶细节对应4~23 km不同深度的场源信息,鄂尔多斯地块南缘东、西部的地壳结构存在明显的差异;渭河盆地凹陷、凸起构造区边界清晰,断裂边界与重力异常边界具有较好的一致性;秦岭造山带重力异常连贯性不好,东、西部重力异常变化特征表现出明显的差异。③渭河盆地及邻区布格重力异常分布与莫霍面埋深具有非常明显的镜像关系。渭河盆地及邻区地震主要分布在六盘山—陇县—宝鸡断裂带、渭河断裂与渭南塬前断裂交汇处、韩城断裂与双泉—临猗断裂交汇处。渭河盆地及邻区重力异常主要由中上地壳剩余密度体所影响,这可能是该区地震以浅源地震为主的主要原因。  相似文献   

19.
—Comparison of deep seismic sounding (DSS) results of different profiles across the Narmada-Son Lineament (NSL), India indicates the anomalous nature of the crust along the Ujjain-Ma han profile. Forward travel time and synthetic seismogram modeling, using normalized record sections of refraction and wide angle reflection data acquired along the Ujjain-Mahan deep seismic sounding profile across NSL, brings into focus the presence of high velocity (7.0–7.3?km/s) subhorizontal layers from a depth of 8–12?km down to Moho. The tectonic implication of such reflections (layering in the crust) is discussed. The two fault zones, reported by earlier workers, flanking the rift might have acted as feeders for the mantle material to intrude into the middle and lower crustal columns.  相似文献   

20.
Introduction Since the middle of the century, gravitational isostasy has been a fundamental hypothesis for inverting the gravity data to find the crust thickness. Geophysicists have done a lot of researches on using gravity data to investigate the depth of Moho discontinuity. Since 1980, the International Lithosphere Program emphasized the importance of investigating the Moho depth variation. Thereafter a lot of results have been published in the world (Braitenberg et al, 2000; Kaban et al,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号