首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract We report structural and metamorphic data from a c. 25-km transect across the eastern Grenville Front Tectonic Zone (GFTZ) to the Britt domain at the northern end of Georgian Bay near Key Harbour, Ontario. Constrasting Grenvillian structural and fabric elements characterize the eastern GFTZ, northern Britt domain and a narrow Transition Zone between them. Moderately to steeply dipping foliations with strong down-dip lineations in all three divisions appear to be associated with NW-directed thrusting. In the Transition Zone and northern Britt domain, early S = L fabrics with steep lineations are overprinted by younger structures (S > L) with shallow, SE-SSE-plunging lineations in which sparse, dominantly (but not exclusively) normal-sense kinematic indicators are recognized. Pressure and temperature estimates from Grenvillian metamorphic assemblages in metadi-abase indicate that conditions of P ± 12 kbar and T c 800° C were achieved before or during the thrust-related deformation, with P-T-t paths that indicate near-isothermal decompression to P c. 4 kbar and T c. 700° C. Correlation of fabric elements with points on the P-T-t paths suggests that exhumation occurred during two stages, the first associated with thrusting (≥1035 Ma) and the second with extension and thrusting (pre-1003 Ma). The GFTZ contains steeply to moderately dipping, thrust-related fabrics and lacks shallow, extensional structures; the latest episode of thrusting in the GFTZ is inferred to have taken place at 990-980 Ma. The data are interpreted in terms of a tectonic model involving two stages of propagation of the Grenville orogen towards its foreland (≥1035 Ma and ≥980 Ma), with an intervening period of extension, although the tectonic regime probably remained compressional on the scale of the orogen.  相似文献   

2.
The Gosainkund–Helambu region in central Nepal occupies a key area for the development of Himalayan kinematic models, connecting the well‐investigated Langtang area to the north with the Kathmandu Nappe (KN), whose interpretation is still debated, to the south. In order to understand the structural and metamorphic architecture of the Greater Himalayan Sequence (GHS) in this region, a detailed petrological study was performed, focusing on selected metapelite samples from both the Gosainkund–Helambu and Langtang transects. The structurally lowest sample investigated belongs to the Lesser Himalayan Sequence; its metamorphic evolution is characterized by a narrow hairpin P–T path with peak P–T conditions of 595 ± 25 °C, 7.5 ± 1 kbar. All of the other samples here investigated belong to the GHS. Along the Langtang section, two tectono‐metamorphic units have been distinguished within the GHS: the Lower Greater Himalayan Sequence (L‐GHS), characterized by peak P–T conditions at 728 ± 11 °C, 10 ± 0.5 kbar (corresponding to a T/depth ratio of 22 ± 1 °C km?1), and the structurally higher Upper Greater Himalayan Sequence, with peak metamorphic conditions at 780 ± 20 °C, 7.8 ± 0.8 kbar (corresponding to a T/depth ratio of 31 ± 4 °C km?1). This confirms the existence of a main tectono‐metamorphic discontinuity within the GHS, as previously suggested by other authors. The results of petrological modelling of the metapelites from the Gosainkund–Helambu section show that this region is entirely comprised within a sub‐horizontal and thin L‐GHS unit: the estimated peak metamorphic conditions of 734 ± 19 °C, 10 ± 0.8 kbar correspond to a uniform T/depth ratio of 23 ± 3 °C km?1. The metamorphic discontinuity identified along the Langtang transect and dividing the GHS in two tectono‐metamorphic units is located at a structural level too high to be intersected along the Gosainkund–Helambu section. Our results have significant implications for the interpretation of the KN and provide a contribution to the more general discussion of the Himalayan kinematic models. We demonstrate that the structurally lower unit of the KN (known as Sheopuri Gneiss) can be correlated with the L‐GHS unit; this result strongly supports those models that correlate the KN to the Tethyan Sedimentary Sequence and that suggest the merging of the South Tibetan Detachment System and the Main Central Thrust on the northern side of the KN. Moreover we speculate that, in this sector of the Himalayan chain, the most appropriate kinematic model able to explain the observed tectono‐metamorphic architecture of the GHS is the duplexing model, or hybrid models which combine the duplexing model with another end‐member model.  相似文献   

3.
李永寿  杨兴科  马海州 《岩石学报》2016,32(6):1688-1698
新疆北山盐滩断裂南一带从原划奥陶-志留系地层中解体出古老的角闪岩相-麻粒岩相变质岩和变质侵入岩体,主要岩性为黑云母斜长片麻岩、条带状混合岩、斜长角闪岩、及少量变粒岩、麻粒岩等。其中首次发现了代表中、下地壳深变质作用的中-高压基性麻粒岩。详细的野外调查、岩相学及矿物学研究表明,该基性麻粒岩主要由透辉石、紫苏辉石、褐色普通角闪石及拉长石组成。其演化经历了由麻粒岩相岩石经退变质反应而成为角闪岩相变质岩的过程。研究表明,该区麻粒岩中的单斜辉石及角闪石矿物学成因均属于变质成因,其中单斜辉石形成环境为高压型,而角闪石形成环境为中低压环境。麻粒岩相变质岩形成于约1.25GPa(42km埋深)以下的中高压-高压环境,其形成温度约841℃;而退变质作用下的角闪岩相变质岩应形成于650~657℃的温度范围之内,压力为0.460~0.495GPa之间,相应的代表埋深约为16.5km的中低压型环境。该区高级变质岩及其基性麻粒岩的发现,将对该区地壳成分、麻粒岩的成因与变质作用以及所处的大地构造背景演化等研究无疑将起到非常重要的作用。  相似文献   

4.
李淼  刘晓春赵越 《岩石学报》2007,23(5):1055-1066
东南极普里兹湾地区出露大量泛非期花岗质岩类,利用IA-ICP-MS锆石U-Pb原位定年方法测得达尔克花岗岩、蒙罗克尔花岗岩和阿曼达花岗岩的年龄分别为519±2Ma,497±2Ma和498±7Ma.所有普里兹湾地区花岗岩类均具有较高的全碱含量以及K2O/Na2O、FeO^T/(FeO^T+MgO)和104Ga/Al比值,较低的Mg、Ca、Cr和Ni丰度,表现出A型花岗岩的特点,同时还富集大离子亲石元素和稀土元素,不同程度亏损Sr、Nb、Ta、P和Ti,并具有高87Sr/86Sr初始比值和低εNd(t)值的同位素特征.研究结果表明,普里兹湾地区的岩浆活动可能与后碰撞的造山作用有关,包括岩石圈减薄、岩浆底侵和地壳伸展作用等.普里兹湾A型后碰撞花岗岩的确定支持普里兹带为碰撞造山带的构造属性.  相似文献   

5.
S. Jung  E. Hellebrand 《Lithos》2006,87(3-4):193-213
Rare earth element (REE) and other trace element (Y, Sr, Ti, Cr, V, Na) abundances in garnet from a garnet-bearing metapelite, a pelitic migmatite, a syn-tectonic granite and a post-tectonic leucogranite were measured by secondary ion mass spectrometry (SIMS) in order to identify the effective variables on the trace element distribution between garnet and the host rock. Garnet from the garnet-bearing metapelite, the pelitic migmatite and the syn-tectonic granite is zoned with respect to REE. The cores are enriched by a factor of 2–3 relative to the rims. For the garnets from the garnet-bearing metapelite equilibrium distribution following a simple Rayleigh fractionation is responsible for the decreasing concentrations in REE from core to rim. Garnet from the pelitic migmatite shows a more complex trace element pattern following distinct enrichment and depletion patterns for Ti, V, Cr and REE from core to rim. These features suggest disequilibrium between garnet and the associated melt in which the enrichment of trace elements probably correspond to a period of open-system behaviour in these rocks at a time when the garnet, originally nucleated in the metamorphic environment was incorporated into the melt. The garnet from the syn-tectonic granite shows stepwise decreasing concentrations in REE from core to rim: a REE-rich core can be distinguished from a broad REE-depleted rim. Notably, from core to rim an inflection of the Yb / Er and Yb / Dy ratios is visible. Whereas the decrease of HREE abundance in the core region of the garnet from the syn-tectonic granite may arise from equilibrium partitioning during garnet growth, the inflection can be interpreted as a result of partial melting. Garnet cores with high Yb / Er and Yb / Dy >  1 nucleated in the metamorphic environment without the presence of a melt whereas the rims with lower Yb / Er and Yb / Dy <  1 crystallized in the presence of a melt. Garnet from the leucogranite has lower REE abundances and is considered to be of igneous origin. In contrast to garnet from the other samples, its core has low trace element abundances, whereas its rim is significantly enriched in REE but depleted in Ti. These features suggest that only the outermost rim was in equilibrium with the melt. For this garnet, liquid diffusion controlled partitioning is more likely to explain the extreme trace element variation. An evaluation of Sm and Nd concentrations in garnet and a comparison of Sm–Nd and U–Pb garnet ages and U–Pb monazite ages form the terrane indicate that the observed LREE systematics in the different garnet species are a primary feature and are not homogenized by volume diffusion during high grade amphibolite facies conditions.  相似文献   

6.
周雄  周玉  谭洪旗  岳相元 《地质学报》2022,96(4):1380-1396
松潘-甘孜造山带中部大面积分布西康群浊积岩,为一套厚度巨大(2000~3000 m)的泥质碎屑复理石建造,以深海-次深海海底扇沉积为特征.本文通过对甲基卡稀有金属矿集区分布的西康群砂岩进行主量元素、微量元素及粒度分析,从而揭示该区砂岩构造背景和物源属性.研究结果表明,砂岩样品SiO2、CaO、MgO、Al2 O3、Fe...  相似文献   

7.
《International Geology Review》2012,54(16):1975-1991
Late Palaeozoic granites are widely distributed in the southeastern Beishan area, which is located in the central part of the southern Central Asian Orogenic Belt (CAOB). U–Pb zircon dates of five late Palaeozoic granitic plutons from the southeastern Beishan area yield Permian ages: 285 ± 2 Ma (Shuwojing and Western Shuwojing plutons), 269 ± 3 Ma (Jianquanzi and Jiuquandihongshan plutons), and 260 ± 1 Ma (Jiujing pluton). The early Permian Shuwojing pluton, an unfractionated calc-alkaline biotite monzogranite with slightly positive εNd(t) (+0.7 and +0.6) and low initial 87Sr/86Sr (0.70722 and 0.70712), and the early Permian Western Shuwojing pluton, a high-K calc-alkaline biotite granite with slightly negative εNd(t) (?0.2 and ?0.1) and low initial 87Sr/86Sr (0.70390 and 0.70919), are likely derived from a mixture of depleted (juvenile) mantle and upper continental crustal (or sedimentary) material. The mid-Permian Jianquanzi and Jiuquandihongshan monzogranites have highly fractionated potassium-rich calc-alkaline characteristics with negative εNd(t) (?4.3) and very high initial 87Sr/86Sr (0.71949), reflecting a continental crustal component. The compositionally diverse Jiujing pluton and the granodiorite and high-Sr monzogranite phases display adakite-like compositions with relatively low εNd(t) (?0.1 and ?2.2) and high initial 87Sr/86Sr (0.70822 and 0.70913). The Jiujing low-Sr monzogranite has higher initial 87Sr/86Sr (0.73464) and lower εNd(t) (?2.8), indicating a significant continental crustal component in its genesis. This work, combined with the regional geology and previous studies, suggest that the early to middle Permian southern Beishan plutons formed in a post-collisional environment, probably an intracontinental rift environment linked to asthenospheric upwelling in response to the break-off of a subducted slab. In the late Permian, the southern Beishan area was in a compressive tectonic regime and thickening of the continental crust resulted in the formation of the Jiujing adakite-like granite.  相似文献   

8.
ABSTRACT Thermobarometric studies on various granulite facies areas along the Prydz Bay coast, East Antarctica (73°-79°E, 68°-70°S), show that, at around 1100 Ma, during a late Proterozoic orogeny, the rocks of the Larsemann Hills suffered a lower pressure metamorphic peak than the surrounding areas. Along the Prydz Bay coast, the rocks affected by this event include parts of the Vestfold Hills block plus all of the Rauer Group, the Larsemann Hills and the Munro Kerr Mountains. The dykes in the south-west corner of the Vestfold Hills were recrystallized during this event with little deformation at temperatures not quite as high as in the areas further south-west (650°C, 6.5 kbar) (Collerson et al., 1983), the Rauer Group was metamorphosed at 800°C and 7.5 kbar (Harley, 1987a), the Larsemann Hills at 750°C and 4.5 kbar, and the Munro Kerr Mountains probably at around 850°C and 5 kbar. Retrograde equilibration in the different areas occurred during decompression to about 10 km depth in all areas, followed by isobaric cooling at this depth. This paper shows that the peak metamorphism in the Larsemann Hills occurred at a pressure which is too low to have been the consequence of thermal relaxation of overthickened crust with normal mantle heat flow. Although other areas in Prydz Bay were metamorphosed at sufficiently high pressures so that their decompression paths are not inconsistent with a continental collision model, the inferred pre-metamorphic peak histories and the requirement of consistency with the Larsemann Hills, make it unlikely that collision followed by erosion-driven decompression is an appropriate model. We suggest that the thermal regime of the crust in the Larsemann Hills region was controlled by a perturbation in the asthenosphere, with magma invasion of the crust. We suggest that the 500 Ma event, represented in Prydz Bay by granitic outcrops at Landing Bluff and by several K/Ar ages from the Larsemann Hills area, was responsible for the final excavation of the terrane.  相似文献   

9.
Garnets from recrystallized, staurolite- and kyanite-bearing mica schists from the central Saualpe basement, representing the host rocks of the type-locality eclogites, give concordant Sm–Nd garnet–whole-rock isochron ages between 88.5±1.7 and 90.9±0.7 Ma. The millimetre-sized, mostly inclusion-free grains show fairly homogeneous element profiles with pyrope contents of 25–27%. Narrow rims with an increase in Fe and Mn and a decrease in Mg document minor local re-equilibration during cooling. According to phengite geothermobarometry, peak metamorphic conditions at 90 Ma were close to 20  kbar and 680  °C and similar to those recorded by the eclogites. The garnet rims record about 575  °C/7  kbar for the final stages of metamorphism. A phengitic garnet–mica schist, sampled at the immediate contact with the Gertrusk eclogite, gave a garnet–whole-rock Sm–Nd age of 94.0±2.7 Ma.
Garnet porphyroclasts separated from a pegmatite–mylonite of the Koralpe plattengneiss near Stainz are unzoned and show spessartine contents of 15%. Composition and Sm–Nd ages of close to 260 Ma point to a magmatic origin for these garnets.
The garnet data from the Saualpe document an intense Alpine metamorphism for this part of the Austroalpine basement. The mica schists recrystallized during decompression and rapid exhumation, at the final stages of and immediately following a high- P event. The Koralpe data show that high Alpine temperatures did not reopen the Sm–Nd isotope system, implying a closure temperature in excess of c . 600  °C for this isotopic system in garnet.  相似文献   

10.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

11.
New structural and tectono‐metamorphic data are presented from a geological transect along the Mugu Karnali valley, in Western Nepal (Central Himalaya), where an almost continuous cross‐section from the Lesser Himalaya Sequence to the Everest Series through the medium‐high‐grade Greater Himalayan Sequence (GHS) is exposed. Detailed meso‐ and micro‐structural analyses were carried out along the transect. Pressure (P)–temperature (T) conditions and P–T–deformation paths for samples from different structural units were derived by calculating pseudosections in the MnNKCFMASHT system. Systematic increase of P–T conditions, from ~0.75 GPa to 560 °C up to ≥1.0 GPa–750 °C, has been detected starting from the garnet zone up to the K‐feldspar + aluminosilicate zone. Our investigation reveals how these units are characterized by different P–T evolutions and well‐developed tectonic boundaries. Integrating our meso‐ and micro‐structural data with those of metamorphism and geochronology, a diachronism in deformation and metamorphism can be highlighted along the transect, where different crustal slices were underthrust, metamorphosed and exhumed at different times. The GHS is not a single tectonic unit, but it is composed of (at least) three different crustal slices, in agreement with a model of in‐sequence shearing by accretion of material from the Indian plate, where coeval activity of basal thrusting at the bottom with normal shearing at the top of the GHS is not strictly required for its exhumation.  相似文献   

12.
赣东北蛇绿岩是华南最重要的前寒武纪蛇绿岩之一,本文对其中的樟树墩辉长岩进行了年代学、岩石地球化学及锆石Hf同位素研究。LA_ICP_MS锆石U_Pb测年结果显示樟树墩辉长岩结晶年龄为1 061±44 Ma,代表了洋盆扩张的年龄,也即赣东北蛇绿岩的形成年龄。单颗粒锆石原位Hf同位素分析得到樟树墩辉长岩εHf(t)=6.22~9.94,平均值为8.10,略低于结晶时亏损地幔值;单阶段亏损地幔Hf模式年龄tDM1为1.21~1.41 Ga,平均为1.28Ga,明显大于成岩年龄1 061 Ma。地球化学及锆石Hf同位素结果显示赣东北蛇绿岩地幔具有E-MORB的特点,表明这些辉长岩起源于未发生大规模熔融的初始地幔,推测赣东北蛇绿岩可能形成于古洋盆初始裂解阶段的洋脊环境,赣东北蛇绿岩为MOR型蛇绿岩。  相似文献   

13.
14.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   

15.
Abstract The Catalina Schist of southern California is a subduction zone metamorphic terrane. It consists of three tectonic units of amphibolite-, high- P greenschist- and blueschist-facies rocks that are structurally juxtaposed across faults, forming an apparent inverted metamorphic gradient. Migmatitic and non-migmatitic metabasite blocks surrounded by a meta-ultramafic matrix comprise the upper part of the Catalina amphibolite unit. Fluid-rock interaction at high- P , high- T conditions caused partial melting of migmatitic blocks, metasomatic exchange between metabasite blocks and ultramafic rocks, infiltration of silica into ultramafic rocks, and loss of an albitic component from nonmigmatitic, clinopyroxene-bearing metabasite blocks.
Partial melting took place at an estimated P =˜8–11 kbar and T =˜640–750°C at high H2O activity. The melting reaction probably involved plagioclase + quartz. Trondhjemitic melts were produced and are preserved as leucocratic regions in migmatitic blocks and as pegmatitic dikes that cut ultramafic rocks.
The metasomatic and melting processes reflected in these rocks could be analogous to those proposed for fluid and melt transfer of components from a subducting slab to the mantle wedge. Aqueous fluids rather than melts seem to have accomplished the bulk of mass transfer within the mafic and ultramafic complex.  相似文献   

16.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   

17.
The Liaodong Bay sub-basin is a classic non-marine rift sub-basin in the Bohai Bay, northeastern China. The study area is located on the east side of Liaoxi uplift in the west slope of Liaodong Bay sub-basin. It sits on a draped anticline zone above the paleo-uplift and contains the second biggest offshore hydrocarbon field found in China to date. The sub-basin is bound to the west by the TanLu fault zone, the most active and largest fault active zone in eastern of China, and has been active from the Mesozoic to present. The spatial distribution and temporal evolution of the depositional systems in the lacustrine rift basin were significantly controlled by topography of paleo-uplift and the distribution of sediment transport pathways. Using 3D seismic and densely spaced well data, we systematically analysed the spatial distribution and temporal evolution of sediment transport pathway of the deltaic deposits in the SZ36-1 oilfield in the eastern slope of the Liaozhong sag. Two types of sediment transport pathway, including the fault relay ramps and erosional valleys, were recognised: (i) the fault relay ramps between two sub-parallel faults; and (ii) a series erosional valleys on the uplift, with ‘V-’, ‘U-’ or ‘W-'shaped cross-sectional patterns. Seismic stratal slices reveal that the erosional valleys branch and converge from upstream to downstream. The paleomorphology of the Liaoxi uplift (e.g., erosional valleys and sub-uplifts) and their evolution control the depositional systems and the pattern of sediment dispersal in the rift lacustrine basin area. The research indicates that paleogeomorphology controlled the direction of sediment transport, the capacity and position of sediment accommodation, influenced the type of sedimentary micro-facies and the spatial distribution pattern of the sediments. Seismic stratal slices and paleogeography maps reveal the erosional valleys shrunk progressively with sedimentary fills, resulting in decreasing gradients of the depositional slope, and provide a gentle geomorphology for a large-scale fluvial-delta depositional system to develop.  相似文献   

18.
19.
Granulite facies pargasite orthogneiss is partially to completely reacted to garnet granulite either side of narrow (<20 mm) felsic dykes, in Fiordland, New Zealand, forming ~10–80 mm wide garnet reaction zones. The metamorphic reaction changed the abundance of minerals, and their shape and grain size distribution. The extent of reaction and annealing (temperature‐related coarsening and nucleation) is greatest close to the dykes, whereas further away the reaction is incomplete. As a consequence, grain size and the abundance of garnet decreases away from the felsic dykes over a few centimetres. The aspect ratios of clusters of S1 pyroxene and pargasite in the orthogneiss, which are variably reacted to post‐S1 garnet, decrease from high in the host, to near equidimensional close to the dyke. Post‐reaction deformation localized in the fine‐grained partially reacted areas. This produced a pattern of ‘paired’ shear zones located at the outer parts of the garnet reaction zone. Our study shows that grain size sensitive deformation occurs where the grain size is sufficiently reduced by metamorphic reaction. The weakening of the rock due to the change in grain size distribution outweighs the addition of nominally stronger garnet to the assemblage.  相似文献   

20.
A metamorphic field gradient has been investigated in the Moldanubian zone of the central European Variscides encompassing, from base to the top, a staurolite–kyanite zone, a muscovite–sillimanite zone, a K‐feldspar–sillimanite zone, and a K‐feldspar–cordierite zone, respectively. The observed reaction textures in the anatectic metapsammopelites of the higher grade zones are fully compatible with experimental data and petrogenetic grids that are based on fluid‐absent melting reactions. From structural and microstructural observations it can be concluded that the boundary between the kyanite–staurolite zone and the muscovite‐ and K‐feldspar–sillimanite zones coincides with an important switch in deformation mechanism(s). Besides minor syn‐anatectic shearing (melt‐enhanced deformation), microstructural criteria point (a) to a switch in deformation mechanism from rotation recrystallization (climb‐accommodated dislocation creep) to prism slip and high‐temperature (fast) grain boundary migration in quartz (b) to the activity of diffusion creep in quartz–feldspar layers, and (c) to accommodation of strain by intense shearing in fibrolite–biotite layers. It is suggested that any combination of these deformation mechanisms will profoundly affect the rheological characteristics of high‐grade metamorphic rocks and significantly lower rock strength. Hence, the boundary between these zones marks a major rheological barrier in the investigated cross section and probably also in other low‐ to medium‐pressure/high‐temperature areas. At still higher metamorphic grades (K‐feldspar‐cordierite zone), where the rheologically critical melt percentage is reached, rock rheology is mainly governed by the melt and other deformation mechanisms are of minor importance. In the study area, the switch in deformation mechanism(s) is responsible for large‐scale strain partitioning and concentration of deformation within the higher‐temperature hanging wall during top‐to‐the‐S thrusting, thus preserving a more complete petrostructural record within the rocks of the footwall including indications for a ?Devonian high‐ to medium‐pressure/medium‐temperature metamorphic event. Thrusting is accompanied by diapiric ascent of diatexites of the K‐feldspar‐cordierite zone and infolding of the footwall, suggesting local crustal overturn in this part of the Moldanubian zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号