首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied a terraced fan deposit with unique characteristics located within a trough of Coprates Catena. The fan has an average length of 6.8 km, and is approximately 44 km2 in area and 18 km3 in volume. The fan's broad contributing valley is approximately 35 km long and it noticeably increases in depth about 12.8 km before it intersects the trough, where a rounded knickpoint marks the transition between flat-floored upstream and V-shaped downstream cross-sections. A 14-km-long channel with no apparent source enters the contributing valley from the south. A much smaller sinuous channel has incised along a smaller V-shaped valley in the uppermost eastern portion of the fan deposit. We explored several possible origins for the terraced fan, including mass wasting, volcanic flow, alluvial fan, and delta. We propose that water sourced from volcanic melting of ice eroded and transported material along the contributing valley. This material was then deposited as a delta in a lake within the trough. The concentric terraces are most likely the result of shoreline or ice cover erosion during drops in lake level. A light-toned layered deposit to the east of the fan deposit along the floor of the trough may represent a sedimentary unit formed during the terminal stages of the lake. Although other terraced fans have been identified on Mars, the Coprates Catena fan is unique because it has many more terraces and its surface was incised by a channel and associated valley. The identification of several other valleys to the east suggests that volcanic melting of volatiles during the Hesperian Period created favorable conditions for water flow along the plains in this region.  相似文献   

2.
The application of biomarker climate proxies to lacustrine settings requires a thorough understanding of those processes that give rise to and mediate in the burial and preservation of organic matter in the sediments. This information is to date missing for Lake Baikal in Central Asia. The biogeochemistry of the lake cannot be considered analogous to that in other lacustrine environments given its enormous size, depth, remote location and unique biology. The aim of this paper is to report on the main compound classes in the water column and sediments. As part of an ongoing evaluation of the inputs and fluxes of organic matter in Lake Baikal, we have found that there are significant differences in the inputs and preservation of organic matter between the North and South Basins. Both basins have dominant algal input and a contribution from the terrestrial plants of the lake edges and surrounding environments. However, the concentration of organic material in the sediment traps and sediments of the South Basin is much higher than that of the North Basin. In addition, the South Basin contains much higher proportions of the more labile material than does the North Basin. This is likely due to the South Basin being free of surface ice for a much longer time than the North, and in consequence, primary producers having an overall longer productive season. There is some evidence of microbial activity in the sediment traps and sediments from both the North and South Basins, but it does not appear to be more predominant in one basin than the other. It is probable that the differences in the composition and concentration of biomarkers in sediments between basins is due to the length of and the intensity of the productive season, which is in turn influenced by the climate.  相似文献   

3.
Pleistocene glaciolacustrine sediments of the Kleszczów Graben (the Be chatów outcrop, central Poland) record the origin, development, and decay of a glacial lake formed in the area of a subsiding basin during the advance of the Elsterian ice sheet. The sediments represent a transition from glaciofluvial to glaciolacustrine facies at the bottom part, and from glaciolacustrine to glacial facies at the top. The glaciolacustrine facies represent a few environments inside the lake basin, from the marginal sub-aqueous slope through the bottom part to the sub-aqueous fan. The contact of the glaciolacustrine facies and the overlying glacial till is erosional, and implies that a considerable part of the shallow-water lake facies was eroded.The lake existed for not longer than 600 years, but its development proceeded under the conditions of the Kleszczów Graben subsidence and the approach of the Elsterian ice sheet. Both factors influenced the sedimentation processes. The tectonic and climatic factors were recognised on the basis of facies analysis of lithofacies associations, and of their vertical and lateral changes.  相似文献   

4.
Glacial bedform patterns and sediments deposited by the temperate and polythermal Late Devensian ice sheet in north-central Ireland record changes in the processes, location, and magnitude of subglacial meltwater throughout the last full glacial cycle (21–14 14C kyear BP). Meltwater characteristics are related directly to basal ice thermal regime and ice dynamics, including ice velocity and shifts in the location of ice centres. Therefore, reconstructed meltwater characteristics may provide insight into wider controls on dynamic ice behaviour. A range of meltwater-related features are present across north-central Ireland. These include tunnel valleys, drumlin leeside sequences, eskers, and boulder lags. Other bedforms including Rogen moraines were modified by meltwater activity along ice streams. Meltwater was stored subglacially in two contrasting regions located beneath or near ice centres in north-central Ireland. (1) The Lough Erne Basin is developed in a lowland depression occupied partly by subglacial Rogen moraine ridges which were formed around the time of the last glacial maximum. Meltwater was stored between Rogen ridge crests and released by hydraulic jacking associated with drumlinisation (16.6 14C kyear BP) and ice streaming (13.8 14C kyear BP). (2) The Lough Neagh Basin occupies a similar lowland depression and was the location of an ice sheet centre throughout the last glacial cycle. No bedforms are present beneath or immediately surrounding Lough Neagh. A larger, more continuous meltwater lake existed in the Lough Neagh depression, probably sealed by a region of cold-based ice outside lake margins. Water escaped through regional-scale tunnel valleys, particularly the Poyntzpass channel which was active during the Carlingford ice readvance (Killard Stadial, correlated with Heinrich event 1 at 14.5 14C kyear BP). Overall, reconstructed subglacial lake characteristics and drainage mechanisms are related closely to basal ice thermal regime and substrate relief (controlling lake geometry), and provide insight into controls on overall ice sheet dynamics.  相似文献   

5.
Supraglacial Tsho Rolpa Lake in the Nepal Himalaya has been increasing rapidly in size since the 1950s, corresponding to the mountain-glacier shrinkage after the Little Ice Age. The lake basin expansion results from the subsidence by dead-ice melt below the bottom of the lake, and the retreat of the glacier terminus. Field observations of Tsho Rolpa in 1996 revealed that the retreat of glacier terminus is connected to a wind-induced vertical circulation of surface water heated by solar radiation. In order to clarify the mechanism of the lake expansion associated with sedimentary processes, we measured bottom sedimentation rate with some sediment traps, and vertical suspended sediment concentration (SSC) and water temperature, and analyzed the grain size of suspended and trapped sediments. The sediments, mostly composed of clay-sized grains, are dominantly supplied by glacier-melt water inflow at the glacier terminus. Sedimentary processes of such fine sediment comprise: (1) suspended-sediment fallout from intrusion of horizontal currents; (2) sediment sorting by sediment-laden underflows; and (3) the debris supply from the ice collapse at the glacier terminus. The (1) and (2) processes produce the density stratification of the lake, accompanied by a pycnocline at a depth of about 27 m. The existence of the pycnocline builds up the vertical water circulation in the surface layer to enhance the glacier-melt at the terminus. With respect to the subsidence of the lake bottom, nearly molecular thermal diffusion is probably dominant near the bottom of the deepest point, which results from the kinetic-energy dissipation of sediment-laden underflows. The stable existence of the bottom turbid water throughout the year could cause continuous dead-ice melt below the lake bottom.  相似文献   

6.
The mainly endemic phytoplankton record of Lake Baikal has been used in this study to help interpret climate variability during the last 1000 years in central Asia. The diatom record was derived from a short core taken from the south basin and has been shown to be free from any sedimentary heterogeneities. We employ here a diatom-based inference model of snow accumulation on the frozen lake for the first time (r2boot=0.709; RMSEP=0.120 log cm). However, palaeoenvironmental reconstructions have been improved by the use of correction factors, specifically developed for the dominant phytoplankton (Aulacoseira baicalensis, Aulacoseira skvortzowii, Cyclotella minuta, Stephanodiscus meyerii and Synedra acus) in the south basin of Lake Baikal. Cluster analysis identifies three significant zones in the core, zone 1 (c. 880 AD–c. 1180 AD), zone 2 (c. 1180–1840 AD) and zone 3 (c. 1840–1994 AD), coincident with the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the period of recent warming, respectively. Our results indicate that S. acus dominated the diatom phytoplankton within zone 1 coincident with the MWP. S. acus is an opportunistic species that is able to increase its net growth when A. baicalensis does not. During this period, conditions are likely to have been unfavourable for the net increases in A. baicalensis growth due to the persistence of warm water in the lake, together with an increased length of summer stratification and delay in timing of the autumnal overturn. In zone 2, spring diatom crops blooming under the ice declined in abundances due in part to increased winter severity and snow cover on the lake. Accumulating snow on the lake is likely to have arisen from increased anticyclonic activity, resulting in prolonged winters expressed during the LIA. Thick, accumulating snow cover inhibits light penetration through the ice, thereby having negative effects on cell division rate and extent of turbulence underneath the ice. Consequently, only taxa whose net growth occurs during autumn overturn (C. minuta) predominate in the lake at this time. Diatom census data and reconstructions of snow accumulation suggest that warming in the Lake Baikal region started as early as c. 1750 AD, with a shift from taxa that bloom during autumn overturn to assemblages that begin to grow underneath the frozen lake in spring. Very recent increases and subsequent decline of S. acus in the surface sediments of the lake mirror monitoring records of this species over the last 50 years. Our study confirms that, over the last 1000 years, physical processes are important in determining planktonic diatom populations in the lake and highlights the value of integrated plankton, trap, and sediment studies for improving quantitative palaeoenvironmental reconstructions from fossil material.  相似文献   

7.
Abstract— The C contents and δ13C values of eleven individual micrometeorites have been determined using a combination of stepped combustion and static mass spectrometry. A new low-blank procedure, involving pretreatment of the samples with a solvent to remove surficial contaminants, has enabled samples of 6–84 μg to be analysed successfully. The eleven samples (seven separated from Greenland cryoconite and four from Antarctic ice) were each split prior to C determination and a fragment taken for study using analytical electron microscopy. In this way, the chemical compositions were obtained thereby allowing comparison with other investigations. As with previous studies of micrometeorites collected at the Earth's surface, the major difficulty with interpreting the results involves distinguishing indigenous components from terrestrial contaminants. Overall C contents were typically <0.2 wt%, although one of the Greenland samples contained 1.5 wt% C, considered to arise mainly from algal contamination. For the other samples, around 0.05–0.15 wt% of the total C in each micrometeorite was considered to be organic in nature with at least some of this (if not all) being terrestrial in origin; the remainder was probably indigenous, being analogous to the macromolecular organic material found in primitive carbonaceous chondrites. The generally low content of this indigenous organic material, compared to conventional meteorites, is presumably a reflection of C loss from the micrometeorites either during atmospheric heating, or subsequent weathering. For that C combusting between 500 and 600 °C, ten of the samples appeared to show a simple two-component system (i.e., a mixture of blank and an isotopically light component; δ13C > ?32%). It is possible that the light component is Cδ, a fine-grained form of presolar diamond which is known to be prevalent in primitive chondritic meteorites. If so, then it is present in the micrometeorites at concentrations of ~30–600 ppm (typically 200 ppm), which is a similar level to that in meteorites. An analysis of algae separated from Greenland cryoconite shows tentative evidence for the presence of extraterrestrial silicon carbide; however, further work will be needed to substantiate this  相似文献   

8.
Two sediment cores (length 13.94 and 12.93 m) have been drilled from the small alpine Lake Luanhaizi in the eastern central Qilian Mountains and correlated by means of magnetic susceptibility (MS). This paper focuses on the lithology and chronology of the longer core, on the results of loss on ignition (LOI), element concentration, thermomagnetic as well as magnetic hysteresis loop measurements, and on the ostracod record.The recovered sediments represent three types of depositional environment: a shallow intermittent lake, a deeper permanent lake and a true playa lake. Three stages of a higher lake level and permanence of the water body are reconstructed. The lowermost stage of a permanent lake and inferred favourable environmental conditions occurred probably about 45 14C ka BP. The second stage of a deeper permanent lake occurred either shortly before or, more likely, following the LGM. Most favourable environmental conditions and highest water levels were reconstructed for the uppermost stage comprising the Holocene. Considering the lake record, glaciers have not reached the lake site at 3200 m altitude during the LGM, providing further evidence against a large ice sheet on the Tibetan Plateau.  相似文献   

9.
Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 μm were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 μm in the poorly understood 2.8-μm methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-μm methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 μm that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface.  相似文献   

10.
Iapetus, one of the saturnian moons, has an extreme albedo contrast between the leading and trailing hemispheres. The origin of this albedo dichotomy has led to several hypotheses, however it remains controversial. To clarify the origin of the dichotomy, the key approach is to investigate the detailed distribution of the dark material. Recent studies of impact craters and surface temperature from Cassini spacecraft data implied that sublimation of H2O ice can occur on Iapetus’ surface. This ice sublimation can change the albedo distribution on the moon with time.In this study, we evaluate the effect of ice sublimation and simulate the temporal change of surface albedo. We assume the dark material and the bright ice on the surface to be uniformly mixed with a certain volume fraction, and the initial albedo distribution to incorporate the dark material deposits on the surface. That is, the albedo at the apex is lowest and concentrically increases in a sinusoidal pattern. This situation simulates that dark materials existed around the Iapetus’ orbit billions of years ago, and the synchronously rotating Iapetus swept the material and then deposited it on its surface. The evolution of the surface albedo during 4.0 Gyr is simulated by estimating the surface temperature from the insolation energy on Iapetus including the effect of Saturn’s eccentricity and Iapetus’ obliquity precession, and evaluating the sublimation rate of H2O ice from the Iapetus’ surface.As a result, we found that the distribution of the surface albedo changed dramatically after 4.0 Gyr of evolution. The sublimation has three important effects on the resultant surface albedo. First, the albedo in the leading hemisphere has significantly decreased to approach the minimum value. Second, the albedo distribution has been elongated along the equator. Third, the edge of the low albedo region has become clear. Considering the effect of ice sublimation, the current albedo distribution can be reconstructed from the sinusoidal albedo distribution, suggesting the apex-antapex cratering asymmetry as a candidate for the origin of the albedo dichotomy. From the model analysis, we obtained an important aspect that the depth of the turn-over layer where the darkening process proceeded for 4 Gyr should be an order of 10 cm, which is consistent with evaluation from the Cassini radar observations.  相似文献   

11.
Abstract– Six large iron meteorites have been discovered in the Meridiani Planum region of Mars by the Mars Exploration Rover Opportunity in a nearly 25 km‐long traverse. Herein, we review and synthesize the available data to propose that the discovery and characteristics of the six meteorites could be explained as the result of their impact into a soft and wet surface, sometime during the Noachian or the Hesperian, subsequently to be exposed at the Martian surface through differential erosion. As recorded by its sediments and chemical deposits, Meridiani has been interpreted to have undergone a watery past, including a shallow sea, a playa, an environment of fluctuating ground water, and/or an icy landscape. Meteorites could have been encased upon impact and/or subsequently buried, and kept underground for a long time, shielded from the atmosphere. The meteorites apparently underwent significant chemical weathering due to aqueous alteration, as indicated by cavernous features that suggest differential acidic corrosion removing less resistant material and softer inclusions. During the Amazonian, the almost complete disappearance of surface water and desiccation of the landscape, followed by induration of the sediments and subsequent differential erosion and degradation of Meridiani sediments, including at least 10–80 m of deflation in the last 3–3.5 Gy, would have exposed the buried meteorites. We conclude that the iron meteorites support the hypothesis that Mars once had a denser atmosphere and considerable amounts of water and/or water ice at and/or near the surface.  相似文献   

12.
We present a preliminary photogeologic map of the Scandia region of Mars with the objective of reconstructing its resurfacing history. The Scandia region includes the lower section of the regional lowland slope of Vastitas Borealis extending about 500–1800 km away from Alba Mons into the Scandia sub-basin below ?4800 m elevation. Twenty mapped geologic units express the diverse stratigraphy of the region. We particularly focus on the materials making up the Vastitas Borealis plains and its Scandia sub-region, where erosional processes have obscured stratigraphic relations and made the reconstruction of the resurfacing history particularly challenging. Geologic mapping implicates the deposition, erosion, and deformation/degradation of geologic units predominantly during Late Hesperian and Early Amazonian time (~3.6–3.3 Ga). During this time, Alba Mons was active, outflow channels were debouching sediments into the northern plains, and basal ice layers of the north polar plateau were accumulating. We identify zones of regional tectonic contraction and extension as well as gradation and mantling. Depressions and scarps within these zones indicate collapse and gradation of Scandia outcrops and surfaces at scales of meters to hundreds of meters. We find that Scandia Tholi display concentric ridges, rugged peaks, irregular depressions, and moats that suggest uplift and tilting of layered plains material by diapirs and extrusion, erosion, and deflation of viscous, sedimentary slurries as previously suggested. These appear to be long-lived features that both pre-date and post-date impact craters. Mesa-forming features may have similar origins and occur along the southern margin of the Scandia region, including near the Phoenix Mars Lander site. Distinctive lobate materials associated with local impact craters suggest impact-induced mobilization of surface materials. We suggest that the formation of the Scandia region features potentially resulted from crustal heating related to Alba Mons volcanism, which acted upon a sequence of lavas, outflow channel sediments, and polar ice deposits centered within the Scandia region. These volatile-enriched sediments may have been in a state of partial volatile melt, resulting in the mobilization of deeply buried ancient materials and their ascent and emergence as sediment and mud breccia diapirs to form tholi features. Similar subsurface instabilities proximal to Alba Mons may have led to surface disruption, as suggested by local and regional scarps, mesas, moats, and knob fields.  相似文献   

13.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

14.
This paper presents data concerning recent (1990–2007) surface morphological and ice-dynamical changes on the Tasman Glacier, New Zealand. We use remote-sensing data to derive rates of lake growth, glacier velocities and rates of glacier surface lowering. Between 1990 and 2007, the glacier terminus receded ~ 3.5 km and a large ice-contact proglacial lake developed behind the outwash head. By 2007 the lake area was ~ 6 km2 and had replaced the majority of the lowermost 4 km of the glacier tongue. There is evidence that lake growth is proceeding at increasing rates — the lake area doubled between 2000 and 2007 alone. Measured horizontal glacier velocities decline from 150 m a− 1 in the upper glacier catchment to almost zero at the glacier terminus and there is a consequent down-glacier increase in surface debris cover. Surface debris mapping shows that a large catastrophic rockfall onto the glacier surface in 1991 is still evident as a series of arcuate debris ridges below the Hochstetter icefall. Calculated glacier surface lowering is most clearly pronounced around the terminal area of the glacier tongue, with down-wasting rates of 4.2 ± 1.4 m a− 1 in areas adjacent to the lateral moraine ridges outside of the current lake extent. Surface lowering rates of approximately 1.9 ± 1.4 m a− 1 are common in the upper areas of the glacier. Calculations of future lake expansion are dependent on accurate bathymetric and bed topography surveys, but published data indicate that a further 8–10 km of the glacier is susceptible to calving and further lake development in the future.  相似文献   

15.
《Icarus》1987,70(3):409-441
Thick sequences of layered deposits are found in the Martian Valles Marineris. They exhibit fine, nearly horizontal layering, and are present as isolated plateaus of what may have once been more extensive deposits. Individual sequences of layered deposits are as thick as 5 km. The greatest total thicknesses of deposits are found in Candor, Ophir, and Melas chasmata. individual layer thicknesses range from about 70 to 300 m. Some tilting of sequences is observed, but at the best image resolutions, no angular unconformities are detectable in the layers. The sequences of events in the canyons, as deduced from morphologic and stratigraphic evidence, was (1) graben formation in response to the tharsis uplift, (2) canyon wall retreat and canyon enlargement, roughly contemporaneous with formation of the layered deposits, (3) deep erosion of the layered deposits, (4) landsliding of the canyon walls, and (5) eolian erosion of the layered deposits, perhaps continuing up to the present. We consider four hypotheses for the origin of the layered deposits: they are eolian deposits, they are remnants of the material that makes up the canyon walls, they are deposits of explosive volcanic eruptions, or they were deposited in standing bodies of water. The rhythmic nature of the layers and their lateral continuity, horizontality, great thickness, and stratigraphic relationships with other units in the canyons all appear most consistent with deposition in an aqueous environment. If standing bodies of water existed in the Valles Marineris, they were almost certainly ice-covered. there are three ways in which sediment could have entered an ice-covered lake: down through the ice cover, up from the lake bottom, or in from the lake margins. Layers of sediment could have been transported downward through an ice cover by foundering or Rayleigh-Taylor instabilities, but it is not clear whether there was a viable mechanism for repeatedly accumulating thick sediment layers on top of the ice cover. Subaqueous volcanic eruption on the lake bottom does not suffer from many of the morphologic arguments that make origin by subaerial volcanism seem improbable. While this mechanism is attractive, there are no eruptive centers observed and there is no other direct evidence to support it. Because canyon enlargement took place at roughly the same time as layer deposition, debris from the canyon walls is an obvious and likely source for some of the material in the layered deposits; however, the volume of material removed from the canyon walls may be insufficient to account for all of the presently observed material. We conclude that there are several geologically feasible, but as yet unproven, mechanisms that could have led to formation of thick deposits in ice-covered paleolakes in the Valles Marineris. Present data are insufficient to choose conclusively among the various possibilities. Several types of data from the Mars Observer mission will be useful in further characterizing the deposits and clarifying the process of their origin. The deposits should be considered important targets for a future Mars sample return mission.  相似文献   

16.
The 3.1-μm absorption feature of water-ice has been observed spectroscopically in many molecular clouds and, when it has been observed spectropolarimetrically, usually a corresponding polarization feature is seen. Typically, on these occasions, and particularly for the Becklin–Neugebauer (BN) object, a distinct position angle shift between the feature and continuum is seen, which indicates both a fractionation of the icy material and a changing alignment direction along the line of sight.
Here, the dependence of circular polarimetry on fractionation along the line of sight is investigated and it is shown that the form of its spectrum, together with the sign of the position angle shift, indicates where along the line of sight the icy material lies. More specifically, a coincidence between the sign of the position angle displacement in the ice feature, measured north through east, and that of the circular polarization ice feature means that the icy grains are overlaid by bare grains. Some preliminary circular polarimetry of BN has this characteristic, and a similar situation is found in the only two other cases for which relevant observations so far exist.  相似文献   

17.
18.
Abstract— Antarctic meteorites have been and are being well studied but the potential for glaciological and climatological information in the sites where they are found is only beginning to be realized. To date, meteorite stranding surfaces have been identified only in East Antarctica: (1) The MacKay Glacier/David Glacier region contains the Allan Hills and the Reckling Moraine/Elephant Moraine stranding surfaces. Because the Allan Hills Main Icefield has a large proportion of meteorites with long terrestrial ages, these concentrations of meteorites must have had catchment areas extending well inland, in contrast to the present. Where known, bedrock topography is mesa-like in form and influences ice flow directions. Ice levels at the Allan Hills may have been higher by 50–100 m in the past. Reckling Moraine and Elephant Moraine are located on a long patch of ice running westward from Reckling Peak; the ice appears to be pouring over a bedrock escarpment. (2) In North Victoria Land, ice diverges around Frontier Mountain and flows into a site behind the barrier where ablation occurs extensively. It is proposed that meteorites and rocks were dumped by ice flow at the mouth of a valley in the lee of the mountain at the site where a meltwater pond existed, in a depression produced by ablation. Later, the pond migrated headward along the valley to a point where it is today, leaving a morainal deposit with the meteorites at a higher level. (3) Between the Beardmore and Law Glaciers, ice flows sluggishly into the southwestern margin of the Walcott Névé. Northeastern sections of the Walcott are virtually barren of meteorites. The entering Plateau ice is diverted northward to flow along the base of Lewis Cliff. This flow apparently terminates in an ice tongue protruding into a vast moraine, where a very large concentration of meteorites was found on the ice. This final segment of flowing ice is called the Lewis Cliff Ice Tongue. Meteorite Moraine, a subsidiary occurrence 2 km to the northeast, is also found against morainal deposits. The origin of the moraines and the history of meteorite concentration at this site is the subject of some debate. (4) The Transantarctic Mountains are submerged along one segment many hundreds of km in length by ice flowing off the Polar Plateau. The Thiel Mountains, Pecora Escarpment and Patuxent Range are the only surface indications of the underlying mountains along this interval, and meteorite stranding surfaces are found at each of these sites. Little is yet known about ice dynamics at these sites. (5) The immense Yamato Mountains meteorite stranding surface covers an area of about 4000 km2. So far, most meteorites have been recovered in the upper reaches of this blue ice field, where ice flow is slowed by outlying subice barriers of the Yamato Mountains. Individual massifs in this range extend northward over 50 km, and the Yamato Meteorite Icefield loses 1100 m in elevation over this distance. (6) The Sør Rondane Mountains form a barrier to ice flow off the Polar Plateau. The major meteorite stranding surface associated with this barrier is the Nansenisen Icefield, a large ablation area about 50 km upstream of the mountains. The existence of a meteorite stranding surface at this site has not been explained so far. Most meteorite stranding surfaces have been functioning for a long time. They are sites where net ablation of the surface is occurring; the ice at these sites is stagnant or flowing only slowly, and the numbers of meteorites with great terrestrial ages decrease exponentially. Concentration mechanisms operating at these sites involve ablation, direct infall, time, low temperatures, moderate weathering and wind ablation. Detrimental to concentration are ice flow out of the area and extreme weathering. In spite of the fact that the Antarctic Ice Sheet is thought to be over 10 Ma old, we do not find stranding surfaces with meteorites having greater terrestrial ages than 1 Ma. This suggests that stranding surfaces are transient features, affected on a continental scale by possible extreme warming during late Pliocene and on a smaller scale by regional changes that produce differential effects between icefields. The latter effect is suggested by differences in the average terrestrial age of meteorites at different stranding surfaces. In either case, these sites seem to appear as a result of thinning near the edges of the ice sheet, and stratigraphic sequences may be exposed in the ice at stranding surfaces. We review five models for the production of meteorite stranding surfaces: (1) simple deflation of the ice sheet, in which ablation removes great thicknesses of overlying ice, exposing the contained meteorites while allowing direct falls to accumulate, (2) simple accumulation of direct falls on a bare ice surface that is not deflating, (3) ablation of ice trapped against a barrier, in which meteorites accumulate by direct infall while inflowing ice contributes meteorites by ablation discovery, (4) deceleration of ice by a subice barrier, which allows ablation discovery of meteorites in incoming ice and accumulation of other meteorites on the surface by direct infall and (5) stagnation of ice by encounter with an ice mass able to produce an opposing flow vector, in which ablation discovery and direct infall accumulation processes operate to build the meteorite concentration.  相似文献   

19.
20.
Towards a 4D topographic view of the Norwegian sea margin   总被引:1,自引:1,他引:0  
The present-day topography/bathymetry of the Norwegian mainland and passive margin is a product of complex interactions between large-scale tectonomagmatic and climatic processes that can be traced back in time to the Late Silurian Caledonian Orogeny. The isostatic balance of the crust and lithosphere was clearly influenced by orogenic thickening during the Caledonian Orogeny, but was soon affected by post-orogenic collapse including overprinting of the mountain root, and was subsequently affected by a number of discrete extensional events eventually leading to continental break-up in Early Eocene time. In the mid-Jurassic the land areas experienced deep erosion in the warm and humid climate, forming a regional paleic surface. Rift episodes in the Late Jurassic and Early Cretaceous, with differential uplift along major fault zones, led to more pronounced topographic contrasts during the Cretaceous, and thick sequences of clastic sediments accumulated in the subsiding basins on the shelf. Following renewed extension in the Late Cretaceous, a new paleic surface developed in the Paleocene. Following break-up the margin has largely subsided thermally, but several Cenozoic shortening events have generated positive contraction structures. On the western side of the on-shore drainage divide, deeper erosion took place along pre-existing weakness zones, creating the template of the present day valleys and fjords. In the Neogene the mainland and large portions of the Barents Sea were uplifted. It appears that this uplift permitted ice caps to nucleate and accumulate during the Late Pliocene northern hemisphere climatic deterioration. The Late Pliocene to Pleistocene glacial erosion caused huge sediment aprons to be shed on to the Norwegian Sea and Barents Sea margins. Upon removal of the ice load the landmass adjusted isostatically, and this still continues today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号