首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slant stacking transforms seismic data, recorded as a function of source-receiver offset and traveltime, into the domain of intercept time τ and ray parameter p. The shape of the τ-p-curves thus obtained is closely related to the slowness surfaces of the layers. A layer-stripping operation in the τ-p-domain removes all effects of the layers above the target layer. The resulting curve is equal to the slowness surface of the layer except for a scaling factor containing the thickness and dip of the layer. The slowness surface is a characteristic surface for anisotropic media. This makes the τ-p-domain very suitable for detecting and describing anisotropic layers. The relationship between the shape of τ-p-curves, the slowness surfaces, and the geometry of the layers is derived. Synthetic τ-p-curves calculated with the reflectivity method show some difficulties that can arise in determining the shape of the curves and in applying the stripping operation. It is shown that the effects of vertical inhomogeneity on the interpretation of τ-p-curves in terms of anisotropy are small.  相似文献   

2.
The space-time acoustic wave motion generated by an impulsive monopole source is calculated with the aid of the Cagniard-de Hoop technique. Two configurations with plane interfaces are discussed: an air/fluid/solid configuration with the source and the receiver located in the fluid layer; and a stack of n fluid layers between two acoustic half-spaces where the source and the receiver are located in the upper half-space. Synthetic seismograms are generated for the pressure of the reflected wavefield, using the source signature of an airgun.  相似文献   

3.
Summary In a recent paper,Gupta [5]2) re-examined the significance of leaking modes in Lamb's problem (Lamb [7]). In this paper, we present a brief review of the exact Cagniard-de Hoop solution to this problem, and use these results to examine the question of the leaking mode in more detail. The leaking mode may either cause a separate arrival,P, or influence the shape of other arrivals e.g.SpS. We have attempted to clarify and extend previous results and correct misconceptions which have appeared elsewhere and, therefore, most of this discussion is tutorial in nature.  相似文献   

4.
Classical methods of interpretation of reflection seismic data are such that interpretation and processing usually occur in the “collected” frame of reference. However, in recent times other data planes have gained increasing acceptance in seismology as a viable alternative. Through linear transformations applied to a record section, both the t—p- and p—x-planes can be produced. The r—p-domain may be obtained from the t—x-plane by a transformation known as slant stacking. Normal practice has been to do most of the data processing in the t—x-plane and then transforming to the r—p-plane. However, many of the procedures used in the t—x-domain can be modified for use in the t—p-plane to increase the coherence. Velocity inversion may be carried out either in the r—p-domain or further transformed to the p—x-plane where the modified Herglotz-Wiechert inversion may be applied. To perform the inversion, the t—p-wavefield is converted to a p—x-representation by the use of a new linear transformation technique, the cross-stack. By a simple sampling process along a particular p—x-trajectory, the Herglotz-Wiechert method can be used to reconstruct an acceptable velocity model of the subsurface. A comparison of derived velocity structures is made between that produced by the Herglotz-Wiechert technique and that of the Dix method.  相似文献   

5.
The τ-p transform is an invertible transformation of seismic shot records expressed as a function of time and offset into the τ (intercept time) and p (ray parameter) domain. The τ-p transform is derived from the solution of the wave equation for a point source in a three-dimensional, vertically non-homogeneous medium and therefore is a true amplitude process for the assumed model. The main advantage of this transformation is to present a point source shot record as a series of plane wave experiments. The asymptotic expansion of this transformation is found to be useful in reflection seismic data processing. The τ-p and frequency-wavenumber (or f-k) processes are closely related. Indeed, the τ-p process embodies the frequency-wavenumber transformation, so the use of this technique suffers the same limitations as the f-k technique. In particular, the wavefield must be sampled with sufficient spatial density to avoid wavenumber aliasing. The computation of this transform and its inverse transform consists of a two-dimensional Fast Fourier Transform followed by an interpolation, then by an inverse-time Fast Fourier Transform. This technique is extended from a vertically inhomogeneous three-dimensional medium to a vertically and laterally inhomogeneous three-dimensional medium. The τ-p transform may create artifacts (truncation and aliasing effects) which can be reduced by a finer spatial density of geophone groups by a balancing of the seismic data and by a tapering of the extremities of the seismic data. The τ-p domain is used as a temporary domain where the attack of coherent noise is well addressed; this technique can be viewed as ‘time-variant f-k filtering’. In addition, the process of deconvolution and multiple suppression in the τ-p domain is at least as well addressed as in the time-offset domain.  相似文献   

6.
The objective of this study is to generate the separation-distance-domain (r-domain) transformation of the theoretically calculated wave number domain (m-domain) electromagnetic induction field component Bz(m, ω) of a stratified medium and to search for interpretive information which has been absent in the previously achieved numerical solutions of the problem. The r-domain kernel R?(r, ω) function defining the induction field appears to adequately reflect the layering and electrical properties of the medium if it is expressed as a function of the frequency if the source-receiver separation r is small with respect to the thickness of the first layer. However, exact values of the conductivity cannot be distinguished from those of the neighboring values unless a resistive basement layer is present. This feature is the result of the truncation in series representation of the kernel function R?(m, ω). However, this truncation is regarded as significant in the case of a conductive first layer. In m-domain static-zone studies, a conductive first layer slightly influences its r-domain correspondent. Although the computational cost of obtaining the kernel B(r, ω) by evaluation of the convolution in a cylindrical coordinate system is high, this semi-analytic solution is still superior to those based on the asymptotic assumptions.  相似文献   

7.
The dynamic response of a semi‐infinite fluid‐filled borehole embedded in an elastic half‐space under a concentrated normal surface load is analysed in the long‐wavelength limit. The solution of the problem is obtained with integral transforms in the form of a double integral with respect to the slowness and frequency. The partial P‐ and SVwave responses are further transformed to path integrals along Cagniard paths in the complex slowness plane. Unlike the traditional Cagniard‐de Hoop technique based on the Laplace transform of time dependence, this paper is based on the Fourier transform. The tube‐wave response is presented as a causal integral over a slowness range. The resultant representation in the time‐domain is suitable for the numerical evaluation of the complete response in the fluid‐filled borehole, especially at large distances. Asymptotic analysis of seismic phases arising in the borehole is performed on the basis of the obtained solution. The complete asymptotic wavefield consists in P and SVwaves, the Rayleigh wave and the low‐frequency Stoneley (tube) wave. Pressure synthetics obtained by the use of the asymptotic formulas are shown to be in good agreement with straightforward calculations.  相似文献   

8.
A new method to suppress water-bottom multiples (water-bottom reverberations) uses the fact that in the domain of intercept time and ray parameter (τ–p domain) the water-bottom reverberations are strictly periodical for a horizontal flat sea bottom. Using this property a comb filter can be designed. The window of the filter should be approximately equal to the duration of a source pulse. The algorithm finds the maximum of the periodical energy throughout the τ–p domain and then designs the comb filter which eliminates the water bottom reverberations from each trace in the τ– p domain. This process can be repeated for higher order reverberations. Finally the τ–p domain with attenuated multiples is transformed back to the conventional x -- t space. The method is illustrated on a variety of synthetic data and on a set of real marine CMP data acquired in the North Sea near the Norwegian shore.  相似文献   

9.
When comparing solutions for the propagation of SH waves in plane parallel layered elastic and viscoelastic (anelastic) media, one of the first things that becomes apparent is that in the elastic case the location of the saddle points required to obtain a high frequency approximation are located on the real p axis. This is true of the branch points also. In a viscoelastic medium this is not typical. The saddle point corresponding to an arrival lies in the first quadrant of the complex p-plane as do the branch points. Additionally, in the elastic case the saddle point and branch points lie on a straight line drawn through the origin (the positive real axis in the complex p-plane), while in the viscoelastic case this is generally not the case and the saddle point and branch points lie in such a manner as to indicate the degree of their complex values.In this paper simple SH reflected and transmitted particle displacement arrivals due to a point torque source at the surface in a viscoelastic medium composed of a layer over a half space will be considered. The path of steepest descent defining the saddle point in the first quadrant will be parameterized in terms of a real variable and the high frequency solutions and intermediate analytic results obtained will be used to formulate more specific constraints and observations regarding saddle point location relative to branch point locations in the complex p-plane.As saddle point determination for an arrival is, in general, the solution of a non-linear equation in two unknowns (the real and imaginary parts of the complex saddle point p 0), which must be solved numerically, the use of analytical methods for investigating this problem type is somewhat limited.Numerical experimentation using well documented solution methods, such as Newton's method, was undertaken and some observations were made. Although fairly basic, they did provide for the design of algorithms for the computation of synthetic traces that displayed more efficient convergence and accuracy than those previously employed. This was the primary motivation for this work and the results from the SH problem may be used with minimal modifications to address the more complicated subject of coupled P-SV wave propagation in viscoelastic media.Another reason for revisiting a problem that has received some attention in the literature was to approach it in a fairly comprehensive manner so that a number of specific observations may be made regarding the location of the saddle point in the complex p-plane and to incorporate these into computer software. These have been found to result in more efficient algorithms for the SH wave propagation and a significant enhancement of the comparable software in the P-SV problem.  相似文献   

10.
An approach to extraction of viscoelastic parameters from seismic data is implemented and succesfully tested. Viscoelastic inversion is performed using adaptive damping factors to control the sensitivity of the viscoelastic parameters in relation to the τ-p seismic data. A priori information is incorporated through the damping factors as standard deviations of the data and of the viscoelastic model parameters. The stability of the inversion process is controlled by the variation of the damping factors as a function of the residual errors and parameter updates at each iteration. Tests on synthetic and real data show that P- and S-wave quality factors, Qp and Qs, in addition to P- and S-wave velocities and density Cp, Cs and p, can be extracted from τ-p seismic information. Singular value decomposition analysis demonstrates that estimated Qp and Qs values are more affected by the presence of data inaccuracies and noise than are those of Cp and p. Cs and Qs are not uniquely recovered due to the limited contribution of P-S converted waves. Knowledge of the viscoelastic parameters is of particular importance in accurately describing petrophysical properties of rocks and pore fluids existing in the subsurface; this is demonstrated with real data from the Gulf of Mexico.  相似文献   

11.
The receiver function method was originally developed to analyse earthquake data recorded by multicomponent (3C) sensors and consists in deconvolving the horizontal component by the vertical component. The deconvolution process removes travel path effects from the source to the base of the target as well as the earthquake source signature. In addition, it provides the possibility of separating the emergent P and PS waves based on adaptive subtraction between recorded components if plane waves of constant ray parameters are considered. The resulting receiver function signal is the local PS wave's impulse response generated at impedance contrasts below the 3C receiver.We propose to adapt this technique to the wide‐angle multi‐component reflection acquisition geometry. We focus on the simplest case of land data reflection acquisition. Our adapted version of the receiver function approach consists in a multi‐step procedure that first removes the P wavefield recorded on the horizontal component and next removes the source signature. The separation step is performed in the τ?p domain while the source designature can be achieved in either the τ?p or the t?x domain. Our technique does not require any a priori knowledge of the subsurface. The resulting receiver function is a pure PS‐wave reflectivity response, which can be used for amplitude versus slowness or offset analysis. Stack of the receiver function leads to a high‐quality S wave image.  相似文献   

12.
Conventional velocity analysis, based on the ideas of rms velocity and hyperbolic reflection events in the x-t domain, is restricted in validity to near vertical incidence. Thus analysis of near-offset datasets usually requires the muting of wide-angle reflections from shallow interfaces before the rms velocities are determined. The ray-theoretical integral for the delay time τ, which depends on the slowness p and the velocity function, is valid for all angles. The wide-angle reflections can be used to improve the accuracy of the derived velocity function in the near surface region, if the recorded x-t data are mapped into the τ-p domain. By representing the velocity function between reflectors as a series of gradient zones, i.e. regions with a uniform increase in velocity with depth, the recovery of the velocities may be posed as a matrix linear inverse problem for the slopes of the gradient zones. In order to convert the problem to a linear one, the velocity discontinuities at the reflecting interfaces must be fixed in advance. Their positions are based on the behaviour of the τ-p map of the data. Finding a stable velocity model may require several iterations with the reflecting interfaces at different positions. An understanding of the workings of the inversion algorithm allied with an analysis of the causes of instability aids the search for a stable model.  相似文献   

13.
We present a new method for producing a ‘brute’ velocity image rapidly and automatically from traveltimes picked from densely sampled refraction data. The procedure involves imaging by data transformation from the time–offset domain into the tau–p (intercept–slope) domain, and does not include conventional modelling steps. Differences in apparent velocity and tau along reciprocal paths in the up- and downdip directions allow the estimation of the true velocity and geometrical position of the ray turning points. The tau–velocity–turningpoint (τνx) map distributes phases automatically on the basis of geometry and velocity to give a two-dimensional representation of subsurface structure. This map may be converted simply to depth and two-way-time images. Such images have potential for direct geological interpretation, for use as a starting model for seismic inversion, for superimposition on to conventional reflection images, or for input into prestack depth migration and other processing routines.  相似文献   

14.
Wavenumber aliasing is the main limitation of conventional optimum least-squares linear moveout filters: it prevents adequate reject domain weighting for efficient coherent noise rejection. A general frequency domain multichannel filter design technique based on a one-to-one mapping method between two-dimensional (2D) space and one-dimensional (1D) space is presented. The 2D desired response is mapped to the 1D frequency axis after a suitable sorting of the coefficients. A min-max or Tchebycheff approximation to the desired response is obtained in the 1D frequency domain and mapped back to the 2D frequency domain. The algorithm is suitable for multiband 2D filter design. No aliasing damage is inherent in the linear moveout filters designed using this technique because the approximation is done in the frequency-wavenumber (f, k)-domain. Linear moveout filters designed by using the present coefficient mapping technique achieve better pass domain approximations than the corresponding conventional least-squares filters. Compatible reject domain approximations can be obtained from suitable mappings of the origin coefficient of the desired (f k)-response to the 1D frequency axis. The (fk)-responses of linear moveout filters designed by using the new technique show equi-ripple behavior. Synthetic and real data applications show that the present technique is superior to the optimum least-squares filters and straight stacking in recovering and enhancing the signal events with relatively high residual statics. Their outputs also show higher resolution than those of the optimum least-squares filters.  相似文献   

15.
—In deep reflection seismics the estimation of seismic velocities is hampered in most cases due to the low signal level with respect to noise. In the τ-p domain, it is possible to perform the velocity analysis even under such unfavorable signal conditions. This is achieved by making use of special properties of the transform, which enhance the signal-to-noise ratio. Further noise suppression is realized by incorporating filter procedures into the transform algorithm. The velocity analysis itself is also done in the τ-p domain by calculating and evaluating constant velocity gathers. The results can be directly used in the time domain. A mute algorithm, implemented into the τ-p velocity analysis procedure, further reduces noise. This velocity estimation method is discussed with synthetic data and applied to DEKORP data.  相似文献   

16.
二维SH波方程的半解析解及其数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以波动理论为基础, 半解析化求解地震勘探中常用的SH波方程. 获得的主要结果包括: 给出了二维均匀介质中SH波方程的解析解; 利用Cagniard-de Hoop方法详细推导了二维双层介质中SH波方程的解析解, 获得了透射波的解析解表达式. 同时, 基于SH波方程的解析表达式, 给出了包含各种波(如直达波、反射波、首波以及透射波)的解析解和波形图. 对于比较复杂的积分型解析解, 利用数值积分方法给出了数值结果, 并与优化的近似解析离散化方法(ONADM)和4阶Lax-Wendroff修正方法(LWC)的数值结果进行了比较, 以验证解析解的正确性. 本文的研究成果有望在检验波动方程数值新方法的有效性、波传播理论分析等方面得到应用.  相似文献   

17.
Viscoelastic modelling reveals that the interaction of compressional-wave velocity Cp, compressional-wave quality factor Qp, shear-wave velocity Cs, shear-wave quality factor Qs and Poisson's ratio as a function of time intercept τ and ray parameter p, is complicated; however, distinct, potentially diagnostic behaviours are seen for different combinations of viscoelastic parameters. Synthetic seismograms for three viscoelastic reservoir models show that variations in the Poisson's ratio produce visible differences when compared to the corresponding elastic synthetic seismograms; these differences are attributable to interaction of the elastic parameters with Qp and Qs. When the P-wave acoustic impedance contrast is small, viscoelastic effects become more apparent and more useful for interpretation purposes. The corresponding amplitude and net phase spectra reveal significant differences between the elastic and the viscoelastic responses. When P-wave reflectivities are large, they tend to dominate the total response and to mask the Q reflectivity effects. The attenuation effects are manifested as an amplitude decay that increases with both time and ray parameter. The sensitivity of the computed seismic responses for various combinations of viscoelastic parameters suggests the opportunity for diagnostic interpretation of τ-p seismic data. The interpretation of the viscoelastic parameters can permit a better understanding of the rock types and pore fluid distribution existing in the subsurface.  相似文献   

18.
Marine seismic data are always affected by noise. An effective method to handle a broad range of noise problems is a time‐frequency de‐noising algorithm. In this paper we explain details regarding the implementation of such a method. Special emphasis is given to the choice of threshold values, where several different strategies are investigated. In addition we present a number of processing results where time‐frequency de‐noising has been successfully applied to attenuate noise resulting from swell, cavitation, strumming and seismic interference. Our seismic interference noise removal approach applies time‐frequency de‐noising on slowness gathers (τ?p domain). This processing trick represents a novel approach, which efficiently handles certain types of seismic interference noise that otherwise are difficult to attenuate. We show that time‐frequency de‐noising is an effective, amplitude preserving and robust tool that gives superior results compared to many other conventional de‐noising algorithms (for example frequency filtering, τ?p or fx‐prediction). As a background, some of the physical mechanisms responsible for the different types of noise are also explained. Such physical understanding is important because it can provide guidelines for future survey planning and for the actual processing.  相似文献   

19.
— Recently, de Hoop and coworkers developed an asymptotic, seismic inversion formula for application in complex environments supporting multi-pathed and multi-mode wave propagation (de Hoop et al., 1999; de Hoop and Brandsberg-Dahl, 2000; Stolk and de Hoop, 2000). This inversion is based on the Born/Kirchhoff approximation, and employs the global, uniform asymptotic extension of the geometrical method of “tracing rays” to account for caustic phenomena. While this approach has successfully inverted the multicomponent, ocean-bottom data from the Valhall field in Norway, accounting for severe focusing effects (de Hoop and Brandsberg-Dahl, 2000), it is not able to account properly for wave phenomena neglected in the “high-frequency” limit (i.e., diffraction effects) and strong scattering effects. To proceed further and incorporate wave effects in a nonlinear inversion scheme, the theory of directional wavefield decomposition and the construction of the generalized Bremmer coupling series are combined with the application of modern phase space and path (functional) integral methods to, ultimately, suggest an inversion algorithm which can be interpreted as a method of “tracing waves.” This paper is intended to provide the seismic community with an introduction to these approaches to direct and inverse wave propagation and scattering, intertwining some of the most recent new results with the basic outline of the theory, and culminating in an outline of the extended, asymptotic, seismic inversion algorithm. Modeling at the level of the fixed-frequency (elliptic), scalar Helmholtz equation, exact and uniform asymptotic constructions of the well-known, and fundamentally important, square-root Helmholtz operator (symbol) provide the most important results.  相似文献   

20.
地震破裂过程的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究震源力学模型的一个新方向是用动态扩展的剪切裂纹模拟地震破裂过程。本文利用裂端有塑性区薄层且断层面上有摩擦力的平面剪切裂纹错动模式来表示地震破裂过程,对运动方程和边界条件进行拉氏变换和傅氏变换,利用维纳-霍普(Wiener-Hopf)方法和卡格尼阿(Cagniard)方法得到了断层面上的位移和应力表达式。根据裂端附近的能量平衡条件,计算了地震破裂的平均速度和塑性区尺度,还讨论了断层面上的位错分布函数,并对某些前震地震波高频成分增多的现象提出了解释。在本文假定的参数条件下,地震破裂的平均速度c=0.72β,β是介质的剪切波速。塑性区尺度约为地震新断层总长度(包括塑性区)的12%。按本文的结果,由于破裂速度的增加,前震的震波初动半周期减小的异常幅度不会超过39%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号