首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We quantified differences in oxygen isotope fractionation among three biostratigraphically important subfossil ostracod species (Metacypris cordata, Pseudocandona rostrata and Candonopsis kingsleii) from an early Holocene freshwater tufa layer in northern Estonia. Estimated mean δ18O values are −10.05‰ for M. cordata, −9.34‰ for C. kingsleii and −8.75‰ for P. rostrata. All three species exhibit positive offset from the weighted mean annual δ18O of contemporary precipitation (−10.7‰ in δ18OV-PDB) and from the mean δ18O value of authigenic tufa carbonate (−10.64‰) in the ostracod-bearing layer. Assuming that the known oxygen isotope fractionation in P. rostrata (+2.5‰) and M. cordata (+1.5‰) has remained constant over time, the theoretical δ18OV-SMOW of the early Holocene lake water was calculated to have been between −11.52 and −11.92‰, slightly less negative than the local Ordovician groundwater (−11.7 to −12.2‰). δ18O values of the tufa carbonate differ by +0.6 to +1.0‰ from the calculated theoretical isotope composition (δ18OV-PDB) of lake water, indicating that the tufa also did not precipitate in isotopic equilibrium with ambient waters. Results show that the greater the δ18O offset from the calculated, theoretical isotope composition of lake water for an ostracod species, the lower is its preferred mean July temperature. Both our data and earlier published results on δ18O values in Holocene lacustrine carbonates and ostracods from north-eastern Europe, display pronounced decreases in δ18O with an increase in latitude of the study site. This suggests that temperature-dependent, and therefore latitude-dependent isotopic composition of meteoric waters controlled the δ18O values in lacustrine tufa and ostracods throughout the Holocene.  相似文献   

2.
Stable isotopes and trace-element contents of ostracod (Candona neglecta) valves mostly from the Holocene portion of two assembled cores from Petit Lac (Lake Geneva, Switzerland-France) were analysed in order to depict the geochemical record of post-glacial environmental changes of this lake. Additional stable isotope and trace element data from the gastropod Bithynia tentaculata (shells and opercula) from some intervals of these cores, as well as previous data from bulk carbonate from the lower part of the studied intervals were also considered. Mg/Ca and Sr/Ca molar ratios for the Holocene lake water have been estimated from evaluations of the partitioning coefficients for Mg and Sr for C. neglecta and B. tentaculata taking into account the modern-lake water composition. This study shows an overall gentle trend to higher δ18O values in C. neglecta valves from the Boreal interval (mean −8.44‰) to the upper part of the core (mean −8.11‰). This trend is superimposed to higher frequency oscillations of stable isotope values and trace element ratios, especially through the upper Older Atlantic and the Subboreal. The overall isotopic oxygen trend includes several shifts in δ18O of about 1‰. These shifts are interpreted as major regional-global climate changes that have also been observed in other coeval δ18O and pollen records which reflect the Holocene climate variability in other European basins. Especially well-defined peaks in some episodes like Older Atlantic (~8200 yr BP), Younger Atlantic – Subboreal transition (~5600 yr BP) and early Subatlantic (~ 2500 yr BP) correspond to well-recognized events in globally-distributed records. Some of these shifts are correlated with pulses in the lake-level curve of the Lake Geneva. An erratum to this article is available at .  相似文献   

3.
Sediment cores from Lakes Punta Laguna, Chichancanab, and Petén Itzá on the Yucatan Peninsula were used to (1) investigate “within-horizon” stable isotope variability (δ18O and δ13C) measured on multiple, single ostracod valves and gastropod shells, (2) determine the optimum number of individuals required to infer low-frequency climate changes, and (3) evaluate the potential for using intra-sample δ18O variability in ostracod and gastropod shells as a proxy measure for high-frequency climate variability. Calculated optimum sample numbers (“n”) for δ18O and δ13C in the ostracod Cytheridella ilosvayi and the gastropod Pyrgophorus coronatus vary appreciably throughout the cores in all three lakes. Variability and optimum “n” values were, in most cases, larger for C. ilosvayi than for P. coronatus for δ18O measurements, whereas there was no significant difference for δ13C measurements. This finding may be explained by differences in the ecology and life history of the two taxa as well as contrasting modes of calcification. Individual δ18O measurements on C. ilosvayi in sediments from Lake Punta Laguna show that samples from core depths that have high mean δ18O values, indicative of low effective moisture, display lower variability, whereas samples with low mean δ18O values, reflecting times of higher effective moisture, display higher variability. Relatively dry periods were thus consistently dry, whereas relatively wet periods had both wet and dry years. This interpretation of data from the cores applies to two important periods of the late Holocene, the Maya Terminal Classic period and the Little Ice Age. δ18O variability during the ancient Maya Terminal Classic Period (ca. 910–990 AD) indicates not only the driest mean conditions in the last 3,000 years, but consistently dry climate. Variability of δ13C measurements in single stratigraphic layers displayed no relationship with climate conditions inferred from δ18O measurements.  相似文献   

4.
Stable isotopes (δ18O and δD) are useful tracers for investigating hydrologic and climatic variability on a variety of temporal and spatial scales. Since the early isotopic studies on mountainous glaciers in the late 1960s, a great deal of information has been generated on the isotopic composition of rainfall, snow, ice, surface waters, and lake carbonate sediments across the Tibetan Plateau. However, measurements of δ18O and δD values of lake water are scarce. Here we present a new dataset of δ18O and δD values of lake waters collected from 27 lakes across the plateau during a reconnaissance survey in summer 2009. δ18O and δD values of lake water range from −19.9 to 6.6‰ and from −153 to −16‰, respectively. The average values of δ18O and δD are −6.4 and −72‰, considerably greater than those of precipitation observed in this region. The derived Tibetan lake water line, δD = 5.2δ18O − 38.9, is significantly different from the global meteoric water line. Most of the lakes, including some freshwater lakes, contain water with negative values of d-excess (d). There is a negative correlation between d and total dissolved solids (TDS). Each of these findings indicates that evaporation-induced isotopic enrichment prevails in Tibetan lakes. Moreover, we develop an isotope modeling scheme to calculate E/P ratios for Tibetan lakes, using a combination of existing isotopic fractionation equations and the Rayleigh distillation model. We use the intersection of the local evaporation line and GMWL as a first approximation of δ18O and δD values of lake water inputs to infer an E/P ratio for each lake. Our modeling calculations reveal that although variable from lake to lake, the water budget across the plateau is positive, with an average E/P of 0.52. This is in good agreement with other observational and model data that show varying degrees of increases in lake size from satellite imagery and significant decreases in lake salinity in many lakes on the plateau over the last several decades. Together with the new isotopic dataset, the proposed modeling framework can be used to examine and quantify past changes in a lake’s hydrologic balance from the isotopic record of downcore carbonate sediments in the region.  相似文献   

5.
The aim of this study is to describe ostracods from freshwater habitats in the Siberian Arctic in order to estimate the present-day relationships between the environmental setting and the geochemical properties of ostracod calcite. A special focus is on the element ratios (Mg/Ca, Sr/Ca), and the stable isotope composition (δ18O, δ13C), in both ambient waters and ostracod calcite. The most common species are Fabaeformiscandona pedata and F. harmsworthi with the highest frequency in all studied waters. Average partition coefficients D(Sr) of F. pedata are 0.33 ± 0.06 (1σ) in females, and 0.32 ± 0.06 (1σ) in males. A near 1:1 relationship of δ18O was found, with a mean shift of Δmean = 2.2‰ ± 0.5 (1σ) to heavier values in ostracod calcite of F. pedata as compared to ambient waters. The shift is not dependent on δ18Owater, and is caused by metabolic (vital) and temperature effects. Temperature-dependence is reflected in the variations of this shift. For ostracod calcite of F. pedata a vital effect as compared to inorganic calcite in equilibrium was quantified with 1.4‰. Results of this study are valuable for the palaeoenvironmental interpretation of geochemical data of fossil ostracods from permafrost deposits.  相似文献   

6.
Stable isotope analyses on cladoceran subfossil exoskeletons retrieved from sediment cores could allow the reconstruction of past changes in lake food webs provided the δ13C and δ15N values of the exoskeletons reflect those of the organisms’ whole body. The relationships between the C and N stable isotope compositions of the exoskeletons and those of the whole body were investigated for two freshwater cladoceran taxa (Bosmina sp. and Daphnia sp.) from modern samples. The C and N stable isotope compositions of the exoskeleton and those of the whole body were strongly correlated. Exoskeleton δ13C was similar to the whole body δ13C for both taxa. Daphnia exoskeletons were strongly depleted in 15N (−7.9‰) compared to the whole body. Stable isotope analyses were thereafter performed on cladoceran remains from five downcore samples from Lake Annecy, France. Results showed that Bosmina δ15N values increased by more than 4‰, between the early twentieth and twenty first centuries. Such changes might be the result of changes in nitrogen sources or cycling in the lake and/or of major shifts in Bosmina trophic position within the lake food web. This study sets up the potential of stable isotope analyses performed on cladoceran subfossil remains for paleo-ecological purposes.  相似文献   

7.
Oxygen isotope analysis of the adult ostracod Eucypris mareotica cultured at controlled temperatures (10, 15, and 19°C) was used to measure isotopic fractionation during shell calcification. The ostracod shells that precipitated at experimental temperatures are almost in isotopic equilibrium with the culture water as compared to the oxygen isotope fractionation of inorganic carbonates. Moreover, they had almost constant offsets from equilibrium based on the oxygen isotope fractionation of inorganic carbonates. The δ18O values of ostracod shells from the 10°C cultures were higher than those of the 15 and 19°C cultures by 1.6 and 2.7‰, respectively. The observed fractionations are shown by the regression equations: *20c 10° \textC:d 1 8 \textO\textostracod = 1. 1 7+ 0. 5 7d 1 8 \textO\textwater 1 5° \textC:d 1 8 \textO\textostracod = - 0. 4 8+ 0. 6d 1 8 \textO\textwater 1 9° \textC:d 1 8 \textO\textostracod = - 1. 6+ 0. 6d 1 8 \textO\textwater \begin{array}{*{20}c} { 10^\circ {\text{C}}:\delta^{ 1 8} {\text{O}}_{\text{ostracod}} = 1. 1 7+ 0. 5 7\delta^{ 1 8} {\text{O}}_{\text{water}} } \\ { 1 5^\circ {\text{C}}:\delta^{ 1 8} {\text{O}}_{\text{ostracod}} = - 0. 4 8+ 0. 6\delta^{ 1 8} {\text{O}}_{\text{water}} } \\ { 1 9^\circ {\text{C}}:\delta^{ 1 8} {\text{O}}_{\text{ostracod}} = - 1. 6+ 0. 6\delta^{ 1 8} {\text{O}}_{\text{water}} } \\ \end{array} The fractionation factors (α) are slightly lower for the 15 and 19°C cultures, but slightly higher for the 10°C culture, as compared to inorganic carbonates (O’Neil et al. in J Chem Phys 51:5547–5558, 1969). The oxygen fractionation factors of E. mareotica are very close to those of synthetic calcite formed in isotopic equilibrium. The ‘vital offsets’ of valve-δ18O for E. mareotica is so small that we can neglect its effect when using the δ18O of E. mareotica living in lake waters with high pH and salinity to reconstruct the paleoenvironment. The paleotemperature or paleoisotopic composition of lake water interpreted from a core of lacustrine sediment may be closer to the true values when the δ18O data for E. mareotica are used.  相似文献   

8.
Ten meters of lacustrine deposits retrieved from Lake Pergusa (Sicily, southern Italy) were investigated through stable isotope composition (carbon and oxygen) of authigenic carbonate (calcareous muds) and freshwater shells. The core chronology was established through three AMS dates, and by correlation with a previously dated nearby core. Stable isotope data show that the lake water evolution was mainly dominated by evaporation. Between ca. 20 and 28 ka the recovered sediments have very high δ18O values, likely corresponding to very dry climatic conditions. The observed rapid oscillations in the δ18O of the recovered sediments during this period also suggest important climatic fluctuations. More humid conditions dominated during the Holocene period, with the wettest interval occurring between ca. 9000 and 3000 years BP. Late Holocene sediments represent a substantial return to drier conditions. The available pollen data from a nearby core substantially confirm this general climatic trend during the Holocene. The positive correlation between δ13C of the calcareous muds and carbonate content suggests that biological activity played a key role in the carbon isotope evolution of dissolved inorganic carbon. However, a clear climatic signal is not evident from the δ13C record.  相似文献   

9.
乌鲁木齐河流域不同水体中的氧稳定同位素   总被引:1,自引:0,他引:1  
The variations of the stable oxygen isotope in different water mediums in Urumqi River Basin, China, are analyzed. The stable oxygen isotope in precipitation has marked temperature effect either under synoptic or seasonal scale at the head of Urumqi River. The linear regression equations of δ^18O against temperature are δ^18O=-0.94T-12.38 and δ^18O=1.29T-13.05 under the two time scales, respectively. The relatively large δ^18O/temperature slopes show the strong sensitivity of δ^18O in precipitation to temperature variation at the head of Urumqi River. According to the analyses on the δ^18O in precipitation sampled at three stations with different altitudes along Urumqi River, altitude effect is notable in the drainage basin. The δ^18O/altitude gradients have distinct differences: the gradient from Urumqi to Yuejinqiao is merely -0.054‰/hm, but -0.192‰/hm from Yuejinqiao to Daxigou, almost increasing by 2.6 times over the former. No altitude effect is found in surface firn the east branch of Glacier No. 1 at the head of Urumqi River, showing that precipitation in the glacier is from the cloud cluster with the same condensation level. Influenced by strong ablation and evaporation, the δ^18O in surface firn increases with increasing altitude sometimes. Survey has found that the δ^18O in meltwater at the terminus of Glacier No. 1 and in stream water at Total Control have the similar change trend with the former all smaller than the latter, which displays the different runoff recharges, and all mirror the regime of temperature in the same term basicallv.  相似文献   

10.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

11.
I addressed the effects of taphonomic and early diagenetic processes on the isotope composition of cladoceran remains, using both experimental and field approaches. An experiment was designed to mimic the conditions encountered by cladoceran remains when they settle through the water column and are buried in the sediment. Cladoceran exoskeletons were incubated for 4 months in oxic or anoxic water, and in sediment. Changes in their carbon (C) and nitrogen (N) content and isotope compositions were measured. Most changes in isotope composition of exoskeletons took place when they settled through the water column. Once buried in the sediment, however, the δ13C and δ15N values of cladoceran exoskeletons did not undergo further change. Taphonomic processes resulted in an increase in δ13C and δ15N of the cladoceran remains and this was related to microbial degradation, which selectively removed isotopically light C and N compounds from the remains. For δ13C, changes were minimal (<1‰) and occured within the first 3 months. Taphonomic effects on δ15N were larger, from +2 to +5‰, and occurred within the first 2–3 weeks. These effects depended on incubation conditions and were greater in anoxic waters than under oxic conditions. Monthly changes in the isotope composition of sedimenting cladoceran exoskeletons were also recorded in the field using sediment traps, and were compared to the isotope composition of the living cladoceran community. The isotope composition of sedimenting remains displayed values consistent with those that might be expected, considering the effects of taphonomic processes observed in the experiment. Because C and N in cladoceran exoskeletons might involve a different isotope routing, the δ15N value of the remains provides an annual record of the value in the parent community, with a 1-month delay, while δ13C of remains essentially reflects that of the parent community during the period of lake thermal stratification. These findings provide insights into paleolimnological interpretation of isotopic changes in cladoceran remains from sediment cores.  相似文献   

12.
The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4‰, and −42‰ for δ18O and δD isotopes, respectively, and a mean value of 7.75‰ of calculated fractionation factors for δ18O H2O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of δ34S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere. An erratum to this article can be found at  相似文献   

13.
The oxygen isotope ratios of diatoms (δ18Odiatom), and the oxygen and hydrogen isotope ratios of lake water (δW) of lakes in south Alaska provide insight into past changes in atmospheric circulation. Lake water was collected from 31 lakes along an elevation transect and diatoms were isolated from lake sediment from one lake (Mica Lake) in south Alaska. In general, δW values from coastal lakes overlap the global meteoric water line (GMWL). δW values from interior lakes do not lie on the GMWL; they fall on a local evaporation line trajectory suggesting source isotopes are depleted with respect to maritime lakes. Sediment cores were recovered from 58 m depth in Mica Lake (60.96° N, 148.15° W; 100 m asl), an evaporation-insensitive lake in the western Prince William Sound. Thirteen calibrated 14C ages on terrestrial macrofossil samples were used to construct an age-depth model for core MC-2, which spans 9910 cal years. Diatoms from 46, 0.5-cm-thick samples were isolated and analyzed for their oxygen isotope ratios. The analyses employed a newly designed, stepwise fluorination technique, which uses a CO2 laser-ablation system, coupled to a mass spectrometer, and has an external reproducibility of ±0.2‰. δ18Odiatom values from Mica Lake sediment range between 25.2 and 29.8‰. δ18Odiatom values are relatively uniform between 9.6 and 2.6 ka, but exhibit a four-fold increase in variability since 2.6 ka. High-resolution sampling and analyses of the top 100 cm of our lake cores suggest large climate variability during the last 2000 years. The 20th century shows a +4.0‰ increase of δ18Odiatom values. Shifts of δ18Odiatom values are likely not related to changes in diatom taxa or dissolution effects. Late Holocene excursions to lower δ18Odiatom values suggest a reduction of south-to-north storm trajectories delivered by meridional flow, which likely corresponds to prolonged intervals when the Aleutian Low pressure system weakened. Comparisons with isotope records of precipitation (δP) from the region support the storm-track hypothesis, and add to evidence for variability in North Pacific atmospheric circulation during the Holocene.
Zachary SharpEmail:
  相似文献   

14.
西北干旱地区大气降水δ18O的特征及水汽来源   总被引:6,自引:1,他引:6  
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation (CHNIP). During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O. The established local meteoric water line δD=7.42 δ18O+1.38, based on the 95 ob-tained monthly composite samples, could be treated as isotopic input function across the region. The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions. The monthly δ18O values were characterized by a positive correlation with surface air temperature (δ18O (‰) =0.33 T (℃)-13.12). The amount effect visualized during summer period (δ18O (‰) = -0.04P (mm)-3.44) though not appeared at a whole yearly-scale. Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China. The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops. Furthermore, the raindrop suffered a re-evaporation during falling processes, and the pre-cipitation vapor might have been mixed with a quantity of local recycled water vapor. Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data. The estab-lished δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.  相似文献   

15.
We present isotope, cladoceran and diatom results from investigations of Eemian sediments of the palaeolake at Ruszkówek, central Poland. Our analyses of the 15-m-thick sediments indicate that sandy silts occur on the bottom, followed by calcareous gyttja, interbedded with lake marl. The upper part of the sequence contains peat and peaty sands. Values of δ18O change from −9.4‰ to −3.3‰ and δ13C values oscillate between −3.2‰ and +7.0‰. Nine isotope zones (Is) were defined and characterized using stable isotope analysis of carbonates. Fifteen species of subfossil Cladocera were found and six faunal zones were distinguished (Cladocera zones). One hundred and twenty-three diatom taxa, representing 31 genera were identified, enabling us to discern six Diatom Assemblage Zones. The isotope, cladoceran, and diatom data correlate well with pollen data that define seven phases of evolution of the palaeolake at Ruszkówek. The palaeolake began during the final phase of the Wartanian (Late Saalian Glaciation). During the early Eemian, the palaeolake reached its maximum depth. During the Early Vistulian glaciation, the palaeolake declined. Changes in the cladoceran and diatom communities indicate initial oligotrophic conditions in the lake, then an increase to mesotrophy, and finally eutrophic conditions.  相似文献   

16.
Stable isotopes and trace-element content of calcite ostracod valves and aragonite mollusc shells from the Pliocene lacustrine succession of Villarroya allow depicting the geochemical record of environmental changes and to compare our data to the paleoenvironmental reconstruction obtained from other proxies. The lower sequences (A and B) are characterized by relatively high isotopic and Me/Ca values in the biogenic carbonates. The recorded large variations of δ18O in these carbonates mainly reflect variations in the δ18Ow due to precipitation–evaporation processes and, to a lesser extent, variations in temperature of calcification. The δ13C data inform about changes in DIC although they are probably biased by the vital effects of the studied taxa. Minor and trace element contents in ostracod (Mg/Ca, Sr/Ca) and mollusc shells (Sr/Ca) are mainly linked to the Me/Ca of the lake water (Me/Caw), and to a lesser extent to temperature and to uptake kinetic effects. Several possible mechanisms may make the Me/Caw to vary: long periods of Ca-carbonate (calcite, aragonite) deposition after charophyte development, and different inputs for Ca and Mg to the lake due to changes in drainage area configurations through time, including the changes in saline inputs (Na-Cl type) to the lake. The stable isotopes and the calculated Sr/Caw and Mg/Caw from sequence C display lower values than those from sequences A and B. The isotopic values from biogenic carbonates of unit C indicate isotopically diluted waters in a hydrologically open lacustrine environment. Distinct δ13C and δ18O plots for molluscs from unit C reflect the different biotopes and metabolism type. For several intervals of the Villarroya succession there is no direct relationships among: (i) salinity changes inferred from invertebrate paleoecology, (ii) paleoenvironmental slices based on isotopic signatures and Me/Caw calculations (from biogenic carbonate geochemistry) and (iii) climate in the hinterland deduced from pollen data. Lakes where geochemical behaviour is constrained by sporadic saline inputs and/or relative depletion in Ca due to long periods of Ca-carbonate precipitation or biomineralization, like the Pliocene Villarroya lake was, do not show clear correlation patterns between geochemical signals and climate proxies. In these lakes only major environmental trends display unambiguous geochemical signatures, and only some main shifts in the geochemical signature profiles may be correlated with significant global and/or regional environmental changes that have been reported from other paleoenvironmental records. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
We present oxygen and carbon isotope ratios and the morphological structure of the cultured freshwater pearl mussel (Hyriopsis sp., Unionidae) shell and pearl. The number of first-order fluctuations of δ18O of the outer shell layer along the maximum growth axis was consistent with the number of cultured years. The dominant factor controlling annual δ18O fluctuations was water temperature with a minor contribution from the variation in δ18O of ambient water, especially during the rainy season. The δ13C values were approximately constant throughout the life of the mussel, suggesting that the contributions of body size to δ13C of the shell were minor. We observed nine distinct disturbance rings on the outer surface of the shell. Five rings coincided with the five winter peaks of the δ18O profile, indicating winter growth cessation below approximately 10°C, probably because of either inactive growth at low water temperatures or reproduction. Summer disturbance rings were not observed in all years. Moreover, some summer rings showed discontinuity in the inner structure. These findings suggest that summer growth cessation may be caused by occasional events such as heavy rains, as the decrease of dissolved oxygen concentration. The δ18O profile and shell structures indicated that shell aragonite was precipitated at close to equilibrium conditions with respect to the oxygen isotope composition of the ambient water. Hyriopsis sp. shells can potentially be used for reconstruction of past hydrologic conditions. The δ18O of a pearl indicated that calcification occurred over a temperature range of at least 13–23°C. The optimal temperature for pearl calcification in this species is lower than that for marine pearl calcification.  相似文献   

19.
Stable oxygen isotope measurements on fossil chironomid head capsules from lake sediments show that these chitinous remains can be used to reconstruct past lake water δ18O and, indirectly, past climate change. We examined the impact of chemical pretreatment procedures on the chemical and stable oxygen isotope composition, and morphology of chironomid cuticles. Use of alkali, acids, and sodium chlorite alters the chemical composition and the morphological structure of chironomid cuticles by selective removal of chitin or proteins. Gas chromatograms of pyrolyzates show that NaClO2 causes deproteination, whereas the combined use of HCl and HF results in partial chitin removal. Head capsules pretreated with KOH contained both chitin- and protein-derived moieties, although the concentration of protein was reduced, especially after KOH treatment at high concentration (28%) and temperature (100°C). Scanning electron microscopy confirmed that a proteinaceous matrix is still present in modern and fossil head capsules after KOH treatment. This matrix, however, is largely absent in head capsules pretreated with NaClO2. A change in the proportion of chitin and proteins in our samples was associated with differences in chironomid δ18O values. Our results suggest that deproteination results in a relative increase of chironomid δ18O, whereas removal of chitin leads to decreased δ18O values. We therefore discourage the use of acids or prolonged (≥1 h) exposure to hot alkali (70°C) prior to chironomid δ18O analysis. Chitin purification by sodium chlorite causes significant weight loss, which may preclude down-core chironomid δ18O measurements. Caution and standardization are required when pretreating samples for chironomid δ18O analysis to ensure reliable, comparable, and reproducible results.  相似文献   

20.
We used a series of experiments to determine whether stable carbon isotope analysis of modern and fossil larval head capsules of chironomids allowed identification of their dietary carbon source. Our main focus was to assess whether carbon from naturally 13C-depleted methane-oxidizing bacteria (MOB) can be traced in chironomid cuticles using stable carbon isotope analysis. We first showed that a minimum sample weight of ~20 μg was required for our equipment to determine head capsule δ13C with a standard deviation of 0.5‰. Such a small minimum sample weight allows taxon-specific δ13C analyses at a precision sufficient to differentiate whether head capsules consist mainly of carbon derived from MOB or from other food sources commonly encountered in lake ecosystems. We then tested the effect of different chemical pre-treatments that are commonly used for sediment processing on δ13C measurements on head capsules. Processing with 10% KOH (2 h), 10% HCl (2 h), or 40% HF (18 h) showed no detectable effect on δ13C, whereas a combination of boiling, accelerated solvent extraction and heavy chemical oxidation resulted in a small (0.2‰) but statistically significant decrease in δ13C values. Using culturing experiments with MOB grown on 13C-labelled methane, we demonstrated that methanogenic carbon is transferred not only into the larval tissue, but also into chironomid head capsules. Taxon-specific δ13C of fossil chironomid head capsules from different lake sediments was analyzed. δ13C of head capsules generally ranged from −28 to −25.8‰, but in some instances we observed δ13C values as low as −36.9 to −31.5‰, suggesting that carbon from MOB is traceable in fossil and subfossil chironomid remains. We demonstrate that stable carbon isotope analyses of fossil chironomid head capsules can give insights into dietary links and carbon cycling in benthic food webs in the past and that the method has the potential to reconstruct the importance of MOB in the palaeo-diet of chironomid larvae and, indirectly, to infer past changes in methane flux at the sediment water interface in lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号