首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This study presents the 26 major surface water types established in Austria in accordance with the draft of the EU Water Framework Directive (WFD). These types are made up of so‐called aquatic landscape units and large rivers. The 17 aquatic landscape units were defined using a database in which all Austrian running waters with a catchment area greater than 10 km[2] were described according to the following typological features: size of catchment area, altitude of catchment area and confluences, stream order, geology, zoogeographical regions (ecoregions), and subregions. At running waters with gauges, a classification according to flow regimes was carried out. Large rivers were defined as running waters with a stream order ⩾7 and/or a catchment area > 2500 km2 and/or with an average flow >50 m3/s. These major types represent, inter alia, the basis for the establishment of a surveillance monitoring network as required by the WFD.  相似文献   

2.
We used regression analyses of water samples from 18 lakes, nine rivers, and one spring in Ethiopia to (a) test the hypothesis that water bodies of relatively higher salinity (K25>1000 μS cm−1) have a different conductivity to salinity relationship than waters of lower salinity (K25 < 1000 μS cm−1), and (b) develop models to predict total cations and salinity from conductivity that can be used for Ethiopian waters and other African aquatic systems of similar chemical composition. We found no statistical difference in the bilogarithmic relationships (total cations vs. conductivity; salinity vs. conductivity) for waters of higher salinity (K25 > 1000 μS cm−1) and waters of lower salinity (K25 < 1000 μS cm−1). However, comparison among our models and models from the literature suggests that developing separate equations for low and high salinity water bodies has some merit. We believe that the equations developed in this study can be used for Ethiopian waters and other African waters within the range of conductivity in this study.  相似文献   

3.
The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O2 l−1) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mg O2 l−1 (normoxia), 3.0 mg O2 l−1 and 1.5 mg O2 l−1, respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mg O2 l−1 and 1.5 mg O2 l−1 being 48% and 70% lower than those at 6.0 mg O2 l−1. At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.  相似文献   

4.
Technological improvements in remote sensing and geographic information systems have demonstrated the abundance of artificially constructed water bodies across the landscape. Although research has shown the ubiquity of small ponds globally, and in the southeastern United States in particular, their cumulative impact in terms of evaporative alteration is less well quantified. The objectives of this study are to examine the hydrologic and evaporative importance of small artificial water bodies in the Upper Oconee watershed in the northern Georgia Piedmont, USA, by mapping their locations and modelling these small reservoirs using the Soil Water Assessment Tool. Comparative Soil Water Assessment Tool models were run with and without the inclusion of small reservoir surface area and volume. The models used meteorological inputs from 1990–2013 to represent years with drought, high precipitation, and moderate precipitation for both the calibration and evaluation periods. Statistical comparison of streamflow indicated that the calibration methodology produced results where the default model simulation without reservoirs fit observed flows more closely than the modified model with small reservoirs included (e.g., Nash–Sutcliffe efficiency of 0.72 vs. 0.64, r2 of 0.73 vs. 0.66, and percent bias of 11.4 vs. 21.6). In addition, Penman–Monteith, Hargreaves, and Priestley–Taylor evapotranspiration equations were used to estimate actual evaporation from 2,219 small water bodies identified throughout the 1,936.8 km2 watershed. Depending on the evaporation equation used, water bodies evaporated an average of 0.03–0.036 km3/year for the period 2003–2013. Using Penman–Monteith further, if the reservoirs were not considered and average actual evapotranspiration rates from the rest of the basin were applied, only 0.016 km3 of water would have left the basin as a result of evapotranspiration. This finding suggests construction of small reservoirs increased evaporation by an average of 0.017 km3 per year (approximately 46,500 m3/day). As the construction of small reservoirs continues and high resolution image data used to map these water bodies becomes increasingly available, watershed models that evolve to address the cumulative impacts of small water bodies on evaporation and other hydrologic processes will have greater potential to benefit the water resource management community.  相似文献   

5.
不同生活型水生植物对水环境的影响和碳固持能力不同,开展大尺度范围内不同生活型水生植物的时空分布和动态变化研究,是全面掌握湖泊水生态环境变化趋势、准确核算水生生态系统碳源/碳汇的前提。以长江中下游10 km2以上(共131个)的湖泊为研究对象,基于野外调查和先验知识,通过光谱分析,研发了不同生活型水生植物遥感高精度机器学习识别算法,解析了长江中下游湖泊群不同生活型水生植物的时空变化规律。研究表明,长江中下游湖泊群不同生活型水生植物遥感监测精度为0.81,Kappa系数为0.74;1986—2020年长江中下游湖泊群水生植物面积为2541.58~4571.42 km2,占湖泊总面积的15.99%~28.77%,沉水植物是优势类型(Max1995=2649.21 km2,Min2005=921.38 km2),其次是挺水植物(Max2005=1779.44 km2,Min2020=569.05 km2)和浮叶植物(Max2015=685.68 km2,Min2000=293.04 km2);水生植物主要分布在长江干流流域湖泊群,其次是鄱阳湖流域、洞庭湖流域、太湖流域和汉江流域;变化趋势上,1986—2020年长江中下游湖泊群水生植物面积呈现先增长(1986—1995年)、后下降(1995—2010年)、再增加(2010年后)的趋势。本研究可为长江中下游湖泊群生态环境调查及水环境管理提供重要参考。  相似文献   

6.
Regular surveys of bottom water chemistry (SiO2, O2, Fe, Mn) have been carried from 1978 to 1986 in the deepest 30 m of Lake Léman (max. depth 309 m) including interface waters sampled with a Jenkins Mortimer corer. When compared to normal chemical gradients near bottom, i.e. O2 decrease and SiO2 increase, three types of anomalies (lens, interface, and behaviour) have been observed on O2 and SiO2, the most sensitive chemical species. These anomalies were found throughout the year, in several stations of the deepest part of the lake and even along the slope of the lake basin. Major anomalies (O2 + 3 to 10 mg ·l–1; SiO2 -1 to 2 mg·l–1) were generally found at the sediment water interface and may extend 10–20 m above the sediment and last 10 weeks. Others marked lens anomalies could be observed for 3 to 4 months. Several mechanisms are probably responsible for this injection of surface waters along the lake slope (accumulation of turbid water on lake banks after severe windstorms; river density currents due to temperature and/or turbidity difference with lake waters). These water-inputs do not represent important volumes ( 1% total lake volume) but, when occuring at the interface, they ensure a sufficient oxygen level to prevent diffusion of phosphate and ammonia from pore waters when winter lake overturns do not reach bottom layers (from 1972 to 1980). Complete overturns, as observed in 1980/81, are connected with major interface anomalies (bottom O2 moves up from 2 to 10 mg·l–1) occuring before surface mixing reaches the deepest layers.  相似文献   

7.
The weight-specific respiration rate (μl O2 mg−1 AFDW h−1) of three species of leech from Lake Esrom, Denmark, Glossiphonia concolor, G. complanata and Helobdella stagnalis was measured in a closed stirred chamber with a micro electrode. At declining oxygen concentration (mg O2 l−1) all three species expressed moderate ability to regulate respiration, in G. concolor and G. complanata down to 2 mg O2 l−1, in H. stagnalis down to 0.75 mg O2 l−1. Survival in anoxia was measured in closed bottles. The time to 50% survival (LD50) was 30 days in G. concolor at 20 °C and 30 and 4 days in H. stagnalis at 10 and 20 °C, respectively. The results were discussed in relation to habitat and spatial distribution of the three species in the lake.  相似文献   

8.
The ratios of D/H and O18/O16 in natural waters from streams, boreholes, soda springs, hot pools, ponds and larger bodies of water in the Ngawha hydrothermal area were determined. The results are considered in relation to the isotopic changes known to occur in water subjected to evaporation. Where applicable chemical and other work was also considered. It is assumed that stream water isotope composition is the mean value for the isotopic composition of meteoric waters. Measurements on waters taken from boreholes drilled to 65 feet and 350 feet and from the other water sources mentioned, indicate that they were of meteoric origin as judged by stream isotope composition. The waters from the soda springs appeared to be isotopically the same as the stream water, a finding consistent with the absence of evaporative surface. These borehole waters were similar but slightly different in O18 due probably to exchange between rock and water. Heavy isotope enrichment of the ponds and larger bodies of water appeared to be due to non-equilibrium evaporation at ambient temperature. The hot pools in the Ngawha springs area proper were enriched in the heavier isotopes probably due to non-equilibrium evaporation at the usual hot pool temperature of about 40°C and also to exchange of O18 between water and rock. The water from a further borehole drilled to approximately 2,000 feet appeared also to be of meteoric origin but was changed in O18 content to an extent consistent with the assumption that oxygen isotope exchange with rock had taken place at approximately 230°C. The results are used to illustrate possibilities for the use of oxygen and hydrogen isotope measurements in hydrothermal investigations.  相似文献   

9.
We consider 3D steady flow of fresh water over a salt water body in a confined aquifer of constant thickness D, with application to a pumping well in a coastal aquifer. With neglect of mixing, a sharp interface separates the two fluid bodies and an existing analytical solution, based on the Dupuit assumption, is adopted. The aim is to solve for the mixing between the fresh and salt waters for αT/D  1 (αT transverse dispersivity), as field studies indicate that αT = O(10−3 − 10−2 m). The mixing zone around the interface is narrow and solutions by existing codes experience numerical difficulties. The problem is solved by the boundary layer (BL) approximation, extending a method, applied previously to two-dimensional flows. The BL equations of variable-density flow are solved by using the Von Karman integral method, to determine the BL thickness and the rate of entrainment of salt water along the interface. Application to the pumping well problem yields the salinity of the pumped water, as function of the parameters of the problem (well discharge, seaward discharge, well distance from the coast and density difference).  相似文献   

10.
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

11.
Water resources of lakes with natural and regulated hydrological regime are evaluated, and estimates are given to the water resources of artificial water bodies in three federal districts in the Asian part of RF (Ural, Siberian, and Far-Eastern) and the constituent entities of the Federation they contain. The estimates were made by a new procedure, incorporating up-to-date satellite data and functions of Google Earth project. In the Asian part of RF, ~3140000 natural water bodies were analyzed, including ~1170000 lakes >1 ha in area and ~6000 artificial water bodies. Lake water resources in the Asian part of RF amount to 24537 km3, of which ~96% are contained in Lake Baikal. Other 638 km3 are contained in artificial water bodies.  相似文献   

12.
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, 300 m-wide lake with strongly mineralized acid–sulfate–chloride water. The lake water has a temperature of 26–34°C, pH=<0.5–1.3, Stot=2500–4600 ppm and Cl=5300–12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62−+S5O62−+S6O62−=2400 – 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4–Se of 20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well.Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment.Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.  相似文献   

13.
The CO2 degassing from lakes on Pico Island (Azores archipelago) were characterized in order to estimate the total diffuse CO2 output and identify the possible sources of CO2. Two surveys have been made in each lake (Capitão, Caiado, Rosada, Peixinho, Paúl and Seca), in the winter and summer periods. These water bodies show small surface areas and are rather shallow, with depths ranging from 1.8 to 8.6 m. Water samples are cold, both in winter and summer periods, not presenting variations along the water column, with acid to neutral pH (5.26–7.06). The electrical conductivity values point out to very diluted waters (mean range between 27 and 33.4 μS cm−1), of the Na-Cl type, corresponding to meteoric waters influenced by marine salts.To measure the CO2 flux at the lakes surface the modified accumulation chamber method was used, and a total of 1632 measurements were accomplished (711 in winter surveys and 921 in summer). Two statistical analysis (GSA and sGs) were applied to the results of diffuse CO2 flux measurements, showing that the CO2 flux values measured in theses lakes are relatively low (0.60–20.47 g m−2 d−1), what seems to indicate a single source for CO2 (biogenic source), also suggested by the water δ13C isotopic signature.CO2 emissions range between 0.04 t d−1 (Rosada_1) and 0.25 t d−1 (Caiado_1) during the winter surveys, being in general similar to the values recorded during the summer surveys that vary between 0.03 t d−1 (Peixinho_2 and Seca_1) and 0.30 t d−1 (Caiado_2). Taken into account the surface area of the lakes, the highest values were estimated for both surveys made in Seca Lake (˜13 t km−2 d−1). The occurrence of a dense macrophyte mass in a few of the studied lakes, such as Caiado and Seca, seems to enhance the CO2 flux from these water bodies.  相似文献   

14.
Settled particles of fresh, labile organic matter may be a significant source of oxygen demand and nutrient regeneration in seasonally-hypoxic regions caused by nutrient inputs into stratified coastal zones. Studying the dynamics of this material requires sediment sampling methods that include flocculent organic materials and overlying water (OLW) at or above the sediment–water interface (SWI). A new coring device (“HYPOX” corer) was evaluated for examining nitrogen- (N) and oxygen-dynamics at the SWI and OLW in the northern Gulf of Mexico (NGOMEX). The HYPOX corer consists of a “Coring Head” with a check-valve, a weighted “Drive Unit,” and a “Lander,” constructed from inexpensive components. The corer collected undisturbed sediment cores and OLW from sediments at NGOMEX sampling sites with underlying substrates ranging from sand to dense clay. The HYPOX corer could be deployed in weather conditions similar to those needed for a multi-bottle rosette water-sampling system with 20 L bottles. As an example of corer applicability to NGOMEX issues, NH4+ cycling rates were examined at hypoxic and control sites by isotope dilution experiments. The objective was to determine if N-dynamics in OLW were different from those in the water column. “Ammonium demand,” as reflected by potential NH4+ uptake rates, was higher in OLW than in waters collected from a meter or more above the bottom at both sites, but the pattern was more pronounced at the hypoxia site. By contrast, NH4+ regeneration rates were low in all samples. These preliminary results suggest that heterotrophic activity and oxygen consumption in OLW in the hypoxic region may be regulated by the availability of NH4+, or other reduced N compounds, rather than by the lack of sufficient labile organic carbon.  相似文献   

15.
《Marine pollution bulletin》2009,58(6-12):280-286
The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O2 l−1) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mg O2 l−1 (normoxia), 3.0 mg O2 l−1 and 1.5 mg O2 l−1, respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mg O2 l−1 and 1.5 mg O2 l−1 being 48% and 70% lower than those at 6.0 mg O2 l−1. At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.  相似文献   

16.
We present a new paleotemperature scale, based on the oxygen isotopic ratio of the non-exchangeable fraction of the oxygen from diatom silica. The equation t = 17.2 − 2.4 (δ18Osilica − δ18Owater − 40) − 0.2 (δ18Osilica − δ18Owater − 40)2 was derived using recent sediment samples from different oceanic areas, the temperature and isotopic composition of the local surface water. Comparison of our results with other relationships established for quartz-water or amorphous silica-water at higher temperature suggests no difference in isotopic fractionation between quartz-water and biogenic silica-water couples.  相似文献   

17.
18.
水库水体污染控制及富营养化防治是保障城市原水供应安全的重要环节.本研究针对金泽水源水库太浦河来水氮、磷浓度较高的特点,自行设计建设了5个面积均为240 m~2的生态净化模拟试验池(A、B、C、D和对照)开展模拟试验,研究了不同水库形态、水生植物种植面积比例及种植方式对水体氮、磷污染物去除的影响.结果表明,通过模拟试验池的生态净化,原水中铵态氮(NH_4~+-N)、总磷(TP)和总氮(TN)的平均去除率分别为50.36%、53.73%和22.25%,C池TN和NH_4~+-N去除率最高分别达到了24.97%和54.61%,D池TP去除率最高,达到62.16%,水体溶解氧(DO)平均浓度提高了1.11 mg/L,平均透明度提高了27.6 cm,均显著高于对照池.水库形态结构、水生植物面积比例及种植方式对水体氮、磷污染物净化效果影响明显,增大水库浅水区面积能有效提高对水体氮、磷污染物的去除能力,增加水生植物种植面积能有效提高水体氮污染物去除和DO、透明度的提升能力,采用浮床种植方式能有效提高水体磷污染物去除和透明度提升能力.本研究结果能为金泽水源水库及其他类似水库的设计和建设提供科学依据.  相似文献   

19.
In the Jungwon area, South Korea, two contrasting types of deep thermal groundwater (around 20–33 °C) occur together in granite. Compared to shallow groundwater and surface water, thermal groundwaters have significantly lower δ18O and δD values (> 1‰ lower in δ18O) and negligible tritium content (mostly < 2 TU), suggesting a relatively high age of these waters (at least pre-thermonuclear period) and relatively long subsurface circulation. However, the hydrochemical evolution yielded two distinct water types. CO2-rich water (PCO2 = 0.1 to 2 atm) is characterized by lower pH (5.7–6.4) and higher TDS content (up to 3300 mg/L), whereas alkaline water (PCO2 = 10− 4.1–10− 4.6 atm) has higher pH (9.1–9.5) and lower TDS (< 254 mg/L). Carbon isotope data indicate that the CO2-rich water is influenced by a local supply of deep CO2 (potentially, magmatic), which enhanced dissolution of silicate minerals in surrounding rocks and resulted in elevated concentrations of Ca2+, Na+, Mg2+, K+, HCO3 and silica under lower pH conditions. In contrast, the evolution of the alkaline water was characterized by a lesser degree of water–rock (granite) interaction under the negligible inflow of CO2. The application of chemical thermometers indicates that the alkaline water represents partially equilibrated waters coming from a geothermal reservoir with a temperature of about 40 °C, while the immature characteristics of the CO2-rich water resulted from the input of CO2 in Na–HCO3 waters and subsequent rock leaching.  相似文献   

20.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号