首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Paris meteorite is one of the most primitive carbonaceous chondrites. It is reported to be the least aqueously altered CM chondrite, and to have experienced only weak thermal metamorphism. We have analyzed for the first time the amino acid and hydrocarbon contents of this pristine meteorite by gas chromatography–mass spectrometry (GC–MS). When plotting the relative amino acids abundances of several CM chondrites according to the increasing hydrothermal scale (petrologic subtypes), from the CM2.7/2.8 Paris to the CM2.0 MET 01070, Paris has the lowest relative abundance of β‐alanine/glycine (0.15), which fits with the relative abundances of β‐alanine/glycine increasing with increasing aqueous alteration for CM chondrites. These results confirm the influence of aqueous alteration on the amino acid abundances and distribution. The amino acid analysis shows that the isovaline detected in this meteorite is racemic (d /l  = 0.99 ± 0.08; l ‐enantiomer excess = 0.35 ± 0.5%; corrected d /l  = 1.03; corrected l ‐enantiomer excess = ?1.4 ± 2.6%). The identified hydrocarbons show that Paris has n‐alkanes ranging from C16 to C25 and 3‐ to 5‐ring nonalkylated polycyclic aromatic hydrocarbons (PAHs). The lack of alkylated PAHs in Paris seems to be also related to this low degree of aqueous alteration on its parent body. The extraterrestrial hydrocarbon content, suggested by the absence of any biomarker, may well have a presolar origin. The chemistry of the Paris meteorite may thus be closely related to the early stages of the solar nebula with a contribution from interstellar (molecular cloud) precursors.  相似文献   

2.
Abstract— –CR chondrites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites. Three CRs, Elephant Moraine (EET) 92042, Graves Nunataks (GRA) 95229, and Grosvenor Mountains (GRO) 95577, were analyzed for their amino acid content using high‐performance liquid chromatography with UV fluorescence detection (HPLC‐FD) and gas chromatography–mass spectrometry (GC‐MS). Our data show that EET 92042 and GRA 95229 are the most amino acid–rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 ppm to 249 ppm. The most abundant amino acids present in the EET 92042 and GRA 95229 meteorites are the α‐amino acids glycine, isovaline, α‐aminoisobutyric acid (α‐AIB), and alanine, with δ13C values ranging from +31.6‰ to +50.5‰. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin for these compounds. Compared to Elephant Moraine (EET) 92042 and GRA 95229, the more aqueously altered GRO 95577 is depleted in amino acids. In both CRs and CMs, the absolute amino acid abundances appear to be related to the degree of aqueous alteration in their parent bodies. In addition, the relative abundances of α‐AIB and β‐alanine in the Antarctic CRs also appear to depend on the degree of aqueous alteration.  相似文献   

3.
Abstract– To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered CI, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultra performance liquid chromatography‐fluorescence detection and time‐of‐flight mass spectrometry (UPLC‐FD/ToF‐MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two‐ to five‐carbon acyclic amino alkanoic acids with concentrations ranging from approximately 1 to 2,700 parts‐per‐billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five‐carbon (C5) amino acids with much higher relative abundances of the γ‐ and δ‐amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by α‐amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, α‐aminoisobutyric acid (α‐AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, nonracemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with l ‐isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable l ‐isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.  相似文献   

4.
The abundances, distributions, enantiomeric ratios, and carbon isotopic compositions of amino acids in two fragments of the Aguas Zarcas CM2 type carbonaceous chondrite fall and a fragment of the CM2 Murchison meteorite were determined via liquid chromatography time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. A suite of two‐ to six‐carbon aliphatic primary amino acids was identified in the Aguas Zarcas and Murchison meteorites with abundances ranging from ~0.1 to 158 nmol/g. The high relative abundances of α‐amino acids found in these meteorites are consistent with a Strecker‐cyanohydrin synthesis on these meteorite parent bodies. Amino acid enantiomeric and carbon isotopic measurements in both fragments of the Aguas Zarcas meteorites indicate that both samples experienced some terrestrial protein amino acid contamination after their fall to Earth. In contrast, similar measurements of alanine in Murchison revealed that this common protein amino acid was both racemic (D ≈ L) and heavily enriched in 13C, indicating no measurable terrestrial alanine contamination of this meteorite. Carbon isotope measurements of two rare non‐proteinogenic amino acids in the Aguas Zarcas and Murchison meteorites, α‐aminoisobutyric acid and D‐ and L‐isovaline, also fall well outside the typical terrestrial range, confirming they are extraterrestrial in origin. The detections of non‐terrestrial L‐isovaline excesses of ~10–15% in both the Aguas Zarcas and Murchison meteorites, and non‐terrestrial L‐glutamic acid excesses in Murchison of ~16–40% are consistent with preferential enrichment of circularly polarized light generated L‐amino acid excesses of conglomerate enantiopure crystals during parent body aqueous alteration and provide evidence of an early solar system formation bias toward L‐amino acids prior to the origin of life.  相似文献   

5.
We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25–26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low d/l ratios of several proteinogenic amino acids. The d/l ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional l‐ amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β‐alanine, and γ‐amino‐n‐butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of d +l‐ β‐aminoisobutyric acid (β‐AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β‐AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound‐specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20‐fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.  相似文献   

6.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   

7.
Abstract– Asteroids and their fragments have impacted the Earth for the last 4.5 Gyr. Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites ranged from 300 to 3200 parts‐per‐billion (ppb), generally much less abundant than in amino acid‐rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low‐temperature aqueously altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker–cyanohydrin synthesis, the thermally altered meteorites studied here are dominated by small, straight‐chain, amine terminal (n‐ω‐amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n‐ω‐amino acids measured in one of the CV chondrites (δ13C approximately ?25‰) are consistent with 13C‐depletions observed previously in hydrocarbons produced by Fischer‐Tropsch type reactions. The predominance of n‐ω‐amino acid isomers in thermally altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.  相似文献   

8.
The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon‐rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound‐specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g?1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent‐body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound‐specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from –20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C‐depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)‐ and (S)‐sec‐butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the l ‐enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec‐butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of aqueous alteration observed over the monoamine concentrations in Orgueil and Murchison, and to evaluate the primordial synthetic relationships between meteoritic monoamines and amino acids.  相似文献   

9.
Abstract— –We have analyzed ice samples and meteorites from the LaPaz region of Antarctica to investigate the composition of polycyclic aromatic hydrocarbons (PAHs) and amino acids with the goal to understand whether or not there is a compositional relationship between the two reservoirs. Four LL5 ordinary chondrites (OCs) and one CK carbonaceous chondrite were collected as part of the 2003/2004 ANSMET season. Ice samples collected from directly underneath the meteorites were extracted. In addition, exhaust particles from the snowmobiles used during the expedition were collected to investigate possible contributions from this source. The meteorite samples, the particulate matter and solid‐state extracts of the ice samples and the exhaust filters were subjected to two‐step laser mass spectrometry (L2MS) to investigate the PAH composition. For amino acids analysis, the meteorites were extracted with water and acid hydrolyzed, and the extracts were analyzed with offline OPA/NAC derivatization combined with liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC‐FD/ToF‐MS). PAHs in the particulate matter of the ice were found to be qualitatively similar to the meteorite samples, indicating that micron‐sized grains of the meteorite may be embedded in the ice samples. The concentration levels of dissolved PAHs in all the ice samples were found to be below the detection limit of the L2MS. The PAH composition of the snowmobile exhaust is significantly different to the one in particulate matter, making it an unlikely source of contamination for Antarctic meteorites. The amino acids glycine, β‐alanine and γ‐amino‐n‐butyric acid that were detected at concentrations of 3 to 19 parts per billion (ppb) are probably indigenous to the Antarctic meteorites. Some of the LaPaz ice samples were also found to contain amino acids at concentration levels of 1 to 33 parts per trillion (ppt), in particular α‐aminoisobutyric acid (AIB), an abundant non‐protein amino acid of extraterrestrial origin found in some carbonaceous chondrites. We hypothesize that this amino acid could have been extracted from Antarctic micrometeorites and the particulate matter of the meteorites during the concentration procedure of the ice samples.  相似文献   

10.
As part of an integrated consortium study, we have undertaken O, Cd, Cr, Si, Te, Ti, and Zn whole rock isotopic measurements of the Winchcombe CM2 meteorite. δ66Zn values determined for two Winchcombe aliquots are +0.29 ± 0.05‰ (2SD) and +0.45 ± 0.05‰ (2SD). The difference between these analyses likely reflects sample heterogeneity. Zn isotope compositions for Winchcombe show excellent agreement with published CM2 data. δ114Cd for a single Winchcombe aliquot is +0.29 ± 0.04‰ (2SD), which is close to a previous result for Murchison. δ130Te values for three aliquots gave indistinguishable results, with a mean value of +0.62 ± 0.01‰ (2SD) and are essentially identical to published values for CM2s. ε53Cr and ε54Cr for Winchcombe are 0.319 ± 0.029 (2SE) and 0.775 ± 0.067 (2SE), respectively. Based on its Cr isotopic composition, Winchcombe plots close to other CM2 chondrites. ε50Ti and ε46Ti values for Winchcombe are 3.21 ± 0.09 (2SE) and 0.46 ± 0.08 (2SE), respectively, and are in line with recently published data for CM2s. The δ30Si composition of Winchcombe is −0.50 ± 0.06‰ (2SD, n = 11) and is essentially indistinguishable from measurements obtained on other CM2 chondrites. In conformity with petrographic observations, oxygen isotope analyses of both bulk and micromilled fractions from Winchcombe clearly demonstrate that its parent body experienced extensive aqueous alteration. The style of alteration exhibited by Winchcombe is consistent with relatively closed system processes. Analysis of different fractions within Winchcombe broadly support the view that, while different lithologies within an individual CM2 meteorite can be highly variable, each meteorite is characterized by a predominant alteration type. Mixing of different lithologies within a regolith environment to form cataclastic matrix is supported by oxygen isotope analysis of micromilled fractions from Winchcombe. Previously unpublished bulk oxygen isotope data for 12 CM2 chondrites, when combined with published data, define a well-constrained regression line with a slope of 0.77. Winchcombe analyses define a more limited linear trend at the isotopically heavy, more aqueously altered, end of the slope 0.77 CM2 array. The CM2 slope 0.77 array intersects the oxygen isotope field of CO3 falls, indicating that the unaltered precursor material to the CMs was essentially identical in oxygen isotope composition to the CO3 falls. Our data are consistent with earlier suggestions that the main differences between the CO3s and CM2s reflect differing amounts of water ice that co-accreted into their respective parent bodies, being high in the case of CM2s and low in the case of CO3s. The small difference in Si isotope compositions between the CM and CO meteorites can be explained by different proportions of matrix versus refractory silicates. CMs and COs may also be indistinguishable with respect to Ti and Cr isotopes; however, further analysis is required to test this possibility. The close relationship between CO3 and CM2 chondrites revealed by our data supports the emerging view that the snow line within protoplanetary disks marks an important zone of planetesimal accretion.  相似文献   

11.
Fusion crusts form during the atmospheric entry heating of meteorites and preserve a record of the conditions that occurred during deceleration in the atmosphere. The fusion crust of the Winchcombe meteorite closely resembles that of other stony meteorites, and in particular CM2 chondrites, since it is dominated by olivine phenocrysts set in a glassy mesostasis with magnetite, and is highly vesicular. Dehydration cracks are unusually abundant in Winchcombe. Failure of this weak layer is an additional ablation mechanism to produce large numbers of particles during deceleration, consistent with the observation of pulses of plasma in videos of the Winchcombe fireball. Calving events might provide an observable phenomenon related to meteorites that are particularly susceptible to dehydration. Oscillatory zoning is observed within olivine phenocrysts in the fusion crust, in contrast to other meteorites, perhaps owing to temperature fluctuations resulting from calving events. Magnetite monolayers are found in the crust, and have also not been previously reported, and form discontinuous strata. These features grade into magnetite rims formed on the external surface of the crust and suggest the trapping of surface magnetite by collapse of melt. Magnetite monolayers may be a feature of meteorites that undergo significant degassing. Silicate warts with dendritic textures were observed and are suggested to be droplets ablated from another stone in the shower. They, therefore, represent the first evidence for intershower transfer of ablation materials and are consistent with the other evidence in the Winchcombe meteorite for unusually intense gas loss and ablation, despite its low entry velocity.  相似文献   

12.
The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography‐mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot‐water extracts with high relative abundances of β‐alanine and γ‐amino‐n‐butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight‐chained amine‐terminal n‐ω‐amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of ?24‰ ± 6‰ for β‐alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n‐ω‐amino acids may be due to a high temperature Fischer‐Tropsch‐type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.  相似文献   

13.
Abstract— The varied organic suite extracted from the Murchison meteorite contains several amino acids that are common to the biosphere. Some of these have been found to be non‐racemic, but the indigenous nature of their L‐enantiomeric excesses has been subject to debate in view of possible terrestrial contamination. We have investigated two amino acids of common terrestrial and meteoritic occurrence, alanine and glutamic acid, and assessed their indigenous enantiomeric ratios in the Murchison and Murray meteorites through the ratios of some of their derivatives. Analyzed were N‐acetyl alanine, α‐imino propioacetic acid, N‐acetyl glutamic acid and pyroglutamic acid. Both alanine derivatives were found to be racemic, while those of glutamic acid showed L‐enantiomeric excesses varying from 16% to 47.2% for pyroglutamic acid, and from 8.6% to 41% for N‐acetyl glutamic acid. The δ13C was determined for the two enantiomers of Murchison pyroglutamic acid both before and after acid hydrolysis to glutamic acid. The values of +27.7%0 (D‐pyro), +10.0%0 (L‐pyro), +32.2%0 (D‐glu) and +14.6%0 (L‐glu) were obtained. The racemic nature of alanine derivatives strongly suggests that alanine itself, as indigenous to the meteorite, is racemic. The explanation of the L‐enantiomeric excesses found for glutamic acid derivatives is less direct; however, the variability of the enantiomeric ratios for these compounds and the distinctly lower δ13C values determined for pyroglutamic L‐enantiomer point to a terrestrial contamination, possibly dating to the time of fall.  相似文献   

14.
Abstract– Two new fragments of the Almahata Sitta meteorite and a sample of sand from the related strewn field in the Nubian Desert, Sudan, were analyzed for two to six carbon aliphatic primary amino acids by ultrahigh performance liquid chromatography with UV‐fluorescence detection and time‐of‐flight mass spectrometry (LC‐FT/ToF‐MS). The distribution of amino acids in fragment #25, an H5 ordinary chondrite, and fragment #27, a polymict ureilite, were compared with results from the previously analyzed fragment #4, also a polymict ureilite. All three meteorite fragments contain 180–270 parts‐per‐billion (ppb) of amino acids, roughly 1000‐fold lower than the total amino acid abundance of the Murchison carbonaceous chondrite. All of the Almahata Sitta fragments analyzed have amino acid distributions that differ from the Nubian Desert sand, which primarily contains l ‐α‐amino acids. In addition, the meteorites contain several amino acids that were not detected in the sand, indicating that many of the amino acids are extraterrestrial in origin. Despite their petrological differences, meteorite fragments #25 and #27 contain similar amino acid compositions; however, the distribution of amino acids in fragment #27 was distinct from those in fragment #4, even though both are polymict ureilites from the same parent body. Unlike in CM2 and CR2/3 meteorites, there are low relative abundances of α‐amino acids in the Almahata Sitta meteorite fragments, which suggest that Strecker‐type chemistry was not a significant amino acid formation mechanism. Given the high temperatures that asteroid 2008 TC3 appears to have experienced and lack of evidence for aqueous alteration on the asteroid, it is possible that the extraterrestrial amino acids detected in Almahata Sitta were formed by Fischer‐Tropsch/Haber‐Bosch type gas‐grain reactions at elevated temperatures.  相似文献   

15.
LaPaz Icefield (LAP) 02239 is a mildly aqueously altered CM2 carbonaceous chondrite that hosts a xenolith from a primitive chondritic parent body. The xenolith contains chondrules and calcium- and aluminum-rich inclusions (CAIs) in a very fine-grained matrix. The chondrules are comparable in mineralogy and oxygen isotopic composition with those in the CMs, and its CAIs are also mineralogically similar to the CM population apart for being unusually small and abundant. The presence of serpentine demonstrates that the xenolith has been aqueously altered, and its phyllosilicate-rich matrix has a comparable oxygen isotopic composition to the matrices of CM meteorites. The xenolith's chondrules lack fine-grained rims, whereas the xenolith itself has a fine-grained rim that is petrographically and chemically comparable with the rims on coarse grained objects in LAP 02239 and other CM meteorites. These properties show that the xenolith's parent body was formed from similar materials to the CM parent body(ies). Following its lithification by aqueous alteration, a piece of the xenolith's parent body was impact-ejected, acquired a fine-grained rim while free-floating in the protoplanetary disc, then was accreted along with rimmed chondrules and other materials to make the LAP 02239 parent body. Subsequent aqueous processing of the LAP 02239 parent body altered the fine-grained rims on the xenolith, chondrules, and CAIs. The xenolith shows that the timespan of geological evolution of carbonaceous chondrite parent bodies was sufficiently long for some of them to have been aqueously altered before others had formed.  相似文献   

16.
On the microscale, the Winchcombe CM carbonaceous chondrite contains a number of lithological units with a variety of degrees of aqueous alteration. However, an understanding of the average hydration state is useful when comparing to other meteorites and remote observations of airless bodies. We report correlated bulk analyses on multiple subsamples of the Winchcombe meteorite, determining an average phyllosilicate fraction petrologic type of 1.2 and an average water content of 11.9 wt%. We show the elemental composition and distribution of iron and iron oxidation state are consistent with measurements from other CM chondrites; however, Winchcombe shows a low Hg concentration of 58.1 ± 0.5 ng g−1. We demonstrate that infrared reflectance spectra of Winchcombe are consistent with its bulk modal mineralogy, and comparable to other CM chondrites with similar average petrologic types. Finally, we also evaluate whether spectral parameters can estimate H/Si ratios and water abundances, finding generally spectral parameters underestimate water abundance compared to measured values.  相似文献   

17.
Abstract– The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2‐type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large l ‐enantiomeric excesses (l ee ~ 43–59%) of the α‐hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another α‐hydrogen protein amino acid, was found to be nearly racemic (d ≈ l ) using both techniques. Carbon isotope measurements of d ‐ and l ‐aspartic acid and d ‐ and l ‐alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the l ‐excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid–solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial l ‐enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large l ‐enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of nonterrestrial l ‐proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.  相似文献   

18.
Exogenous delivery of amino acids and other organic molecules to planetary surfaces may have played an important role in the origins of life on Earth and other solar system bodies. Previous studies have revealed the presence of indigenous amino acids in a wide range of carbon‐rich meteorites, with the abundances and structural distributions differing significantly depending on parent body mineralogy and alteration conditions. Here we report on the amino acid abundances of seven type 3–6 CK chondrites and two Rumuruti (R) chondrites. Amino acid measurements were made on hot water extracts from these meteorites by ultrahigh‐performance liquid chromatography with fluorescence detection and time‐of‐flight mass spectrometry. Of the nine meteorites analyzed, four were depleted in amino acids, and one had experienced significant amino acid contamination by terrestrial biology. The remaining four, comprised of two R and two CK chondrites, contained low levels of amino acids that were predominantly the straight chain, amino‐terminal (n‐ω‐amino) acids β‐alanine, and γ‐amino‐n‐butyric acid. This amino acid distribution is similar to what we reported previously for thermally altered ureilites and CV and CO chondrites, and these n‐ω‐amino acids appear to be indigenous to the meteorites and not the result of terrestrial contamination. The amino acids may have been formed by Fischer–Tropsch‐type reactions, although this hypothesis needs further testing.  相似文献   

19.
Abstract— CM2 carbonaceous chondrites are the most primitive material present in the solar system, and some of their subtypes, the CM and CI chondrites, contain up to 2 wt% of organic carbon. The CM2 carbonaceous chondrites contain a wide variety of complex amino acids, while the CI1 meteorites Orgueil and Ivuna display a much simpler composition, with only glycine and β‐alanine present in significant abundances. CM1 carbonaceous chondrites show a higher degree of aqueous alteration than CM2 types and therefore provide an important link between the CM2 and CI1 carbonaceous chondrites. Relative amino acid concentrations have been shown to be indicative for parent body processes with respect to the formation of this class of compounds. In order to understand the relationship of the amino acid composition between these three types of meteorites, we have analyzed for the first time three Antarctic CM1 chondrites, Meteorite Hills (MET) 01070, Allan Hills (ALH) 88045, and LaPaz Icefield (LAP) 02277, using gas chromatography‐mass spectrometry (GC‐MS) and high performance liquid chromatography‐fluorescence detection (HPLC‐FD). The concentrations of the eight most abundant amino acids in these meteorites were compared to those of the CM2s Murchison, Murray, Mighei, Lewis Cliff (LEW) 90500, ALH 83100, as well as the CI1s Orgueil and Ivuna. The total amino acid concentration in CM1 carbonaceous chondrites was found to be much lower than the average of the CM2s. Relative amino acid abundances were compared in order to identify synthetic relationships between the amino acid compositions in these meteorite classes. Our data support the hypothesis that amino acids in CM‐ and CI‐type meteorites were synthesized under different physical and chemical conditions and may best be explained with differences in the abundances of precursor compounds in the source regions of their parent bodies in combination with the decomposition of amino acids during extended aqueous alteration.  相似文献   

20.
This issue of Meteoritics & Planetary Science celebrates the science of the Winchcombe meteorite, which fell to Earth on the 28th February 2021 close to the town of Winchcombe, Gloucestershire in the UK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号