首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an overview of a number of the principal findings regarding the hot plasmas (E 50 keV) in Jupiter's magnetosphere by the HISCALE instrument during the encounter of the Ulysses spacecraft with the planet in February 1992. The hot plasma ion fluxes measured by HI-SCALE in the dayside magnetosphere are similar to those measured in the same energy range in this region by the Voyager spacecraft in 1979. Within the dayside plasma sheet, the hot-ion energy densities are comparable with, or larger than, the magnetic field energy densities; these hot ions are found to corotate at about one-half the planetary corotational speed. For ions of energies 500 keV/nucleon, the protons contributed from 50–60% to as much as 80% of the energy content of these plasmas. Strong, magnetic-field-aligned streaming was found for both the ions and electrons in the high-latitude duskside magnetosphere. The ion and electron pitch-angle distributions could be characterized by cos25 α throughout many of the high anisotropy intervals of the outbound pass. There is some evidence in the ion pitch-angle distributions for a corotational component in the hot plasmas at high Jovian latitudes. While there are limitations owing to the finite geometries of the detector telescope systems on the determination of the angular spreads of the ion and electron beams, the measurements show that there are intervals when the particle distributions are not bidirectional. At such times, locally the hot plasmas could be carrying currents of 10−4μAm−2. The temporal variations in the streaming electron fluxes are substantially larger than the variations measured for the fluxes that are more locally mirroring. The temporal variations contain periodicities that may correspond to hydromagnetic wave frequencies in the magnetosphere as well as to larger scale motions of magnetospheric plasmas. On nearly half of the days for about a 130 day interval around the time of the Ulysses encounter with the planet, particles of Jovian origin were measured in the interplanetary medium. An event discussed herein shows evidence of an energy dependence of the particle release process from the planetary magnetosphere into the interplanetary medium.  相似文献   

2.
The repeated samplings of the Jovian magnetosheath during the Ulysses encounter with Jupiter provided an opportunity to probe the planetary depletion layer. Of the 10 complete crossings of the Jovian magnetopause, only three contained clear signatures of an overlying depletion layer. All of these occurred on the flanks of the magnetosphere near the dusk terminator; crossings on the dayside were ambiguous or clearly lacked a depletion layer signature. In this paper we present a detailed analysis of the observations by the Ulysses solar wind plasma and magnetometer experiments and discuss conditions favorable and unfavorable for depletion layer observation.  相似文献   

3.
During the inbound segment of the Ulysses flyby of Jupiter, there were multiple incursions into the dawnside low-latitude boundary layer, as identified by Bame et al. (Science257, 1539–1542, 1992) using plasma electron data. In the present study, ion composition and spectral measurements provide independent collaborative evidence for the existence of distinct boundary layer regions. Measurements are taken in the energy-per-charge range of 0.6–60 keV/e and involve mass as well as mass-per-charge identification by the Ulysses/SWICS experiment. Ion species of Jovian magnetospheric origin (including O+, O2+, S2+, S3+) and sheath origin (including He2+ and high charge state CNO) have been directly identified for the first time in the Jovian magnetospheric boundary layer. Protons of probably mixed origin and He+ of possibly sheath (ultimately interstellar pickup) origin were also observed in the boundary layer. Sheath-like ions are observed throughout the boundary layer; however, the Jovian ions are depleted or absent for portions of two boundary layer cases studied. Ions of solar wind origin are observed within the outer magnetosphere. and ions of magnetospheric origin are found within the sheath, indicating that transport across the magnetopause boundary can work both ways, at least under some conditions. Although their source cannot be uniquely identified, the proton energy spectrum in the boundary layer suggests a sheath origin for the lower energy protons.  相似文献   

4.
The passage of Ulysses through Jupiter's magnetosphere presents a new opportunity to investigate the contribution to the Jovian magnetosphere of ions of atmospheric origin. A determination of the magnetospheric H+/He2+ flux ratio allows an estimate of the relative abundance of ionospheric material in the Jovian magnetosphere. We find that the H+/He2+ flux ratio, measured in the energy/charge range between 0.65 and 60 keV/e, steadily increases from a solar wind level of 25 at the magnetopause to a value of 700 at the point of closest approach, and then steadily decreases whilst approaching the magnetopause on the outbound path. We conclude from this that: (1) there is a significant solar wind component throughout the outer and middle magnetosphere; and (2) a significant fraction of the protons in the middle magnetosphere are of nonsolar origin.  相似文献   

5.
The COSPIN/KET experiment onboard Ulysses has been monitoring the flux of 3–20 MeV electrons in interplanetary space since the launch of Ulysses in October 1990. The origin of these electrons has been known for a long time to be the Jovian magnetosphere. Propagation models assuming interplanetary diffusion of these electrons in the ideal Parker magnetic field were successfully developed in the past. The average electron flux measured by our experiment agrees with these models for most of the times before and after the Jovian flyby of February 1992, i.e. in and out of the ecliptic down to 28° S of heliographic latitude for the last data presented here (end of March 1993).However, in addition to this average flux level well accounted for by diffusion in an ideal Parker field, we have found very short duration electron events which we call “jets”, characterized by: (i) a sharp increase and decrease of flux; (ii) a spectrum identical to the electron spectrum in the Jovian magnetosphere; and (iii) a strong first-order anisotropy. These jets only occur when the magnetic field at Ulysses lies close to the direction of Jupiter, and most of the time (86% of the events) points outwards from Jupiter, i.e. has the same polarity after the flyby as the Jovian dipole (North to South). These events are interpreted as crossings by Ulysses of magnetic flux tubes or sheets directly connected to the location of the Jovian magnetosphere from which electrons escape into interplanetary space. The average thickness of these sheets is 1011cm or 14 Jovian radii. These jets are clearly identified up to 0.4 a.u. before the Jupiter flyby in the ecliptic plane, and up to 0.9 a.u. out of the ecliptic.Moreover, the characteristic rocking of the electron spectrum in the Jovian magnetosphere with a 10 h periodicity is found to be present during the jets, and predominantly during them. In the past, this modulation has been reported to be present in interplanetary space as far as 1 a.u. upwind of Jupiter, a fact which cannot be accounted for by diffusion in the average Parker magnetic field. Our finding gives a simple explanation to this phenomenon, the 10 h modulation being carried by the “jet” electrons which travel with no appreciable diffusion along magnetic field lines with a direction far from the ideal Parker spiral.  相似文献   

6.
《Planetary and Space Science》1999,47(3-4):521-527
It is widely recognized that Io, the innermost of the Galilean satellites, releases matter into the rapidly-rotating Jovian magnetosphere at rates that may be as high as a ton per second. Following ionization, this iogenic, heavy-ion plasma dominates the dynamics of the Jovian magnetosphere. On average this plasma must be lost at a rate that balances its generation but we do not know whether this process is steady or intermittent. Measurements by the Galileo magnetometer suggest that this process is unsteady. By estimating the magnetic and particle stresses from these observations, we further can derive a mass density profile that is consistent with earlier measurements of the current sheet density and that is consistent with estimates of the radial transport of mass in the middle Jovian magnetosphere.  相似文献   

7.
We examine the energetic (MeV) ion data obtained by the Anisotropy Telescopes instrument of the Ulysses COSPIN package during two northern high-latitude excursions prior to closest approach to Jupiter, when the spacecraft left the region of trapped fluxes on closed magnetic field lines at lower latitudes and entered a region of open field lines which we term the polar cap. During these intervals the ion fluxes dropped by 4–5 orders of magnitude to low but very steady values, and the ion spectrum was consistent with the observation of an essentially unprocessed interplanetary population. Ion anisotropies observed at these distances (within 16RJ, of Jupiter) indicate that in the low-latitude, high-flux regions the flows are principally azimuthail and in the sense of corotation, with speeds which are within a factor of 2 (in either direction) of rigid corotation. In the higher latitude trapped flux regions the flows rotate to become northward as the polar cap is approached, while in the polar cap itself the flows rotate further to become anti-corotational (and anti-sunward in the morning sector) and northward. These results provide primary evidence of the existence of solar wind-driven flows in the outer Jovian magnetosphere mapping to the high-latitude ionosphere. Investigation of concurrent magnetic data for the signatures of related field-aligned currents reveals only weak signatures with an amplitude of order 1 nT. The implication is that the height-integrated Pedersen conductivity of the ionosphere to which the spacecraft was connected was low, of order 0.01 mho or less. We also examine the ion observations during the two northern high-latitude excursions previous to those discussed above. These data indicate that the spacecraft approached but did not penetrate the open flux region during these intervals.  相似文献   

8.
Numerical calculations have been made of the radial gradients and the anisotropyvector atr=1 AU due to galactic cosmic-ray protons and helium nuclei. The model used assumes transport by convection and anisotropic diffusion, and includes the energy losses due to adiabatic deceleration. The present calculations are for the 1964–65 solar minimum. An important constraint applied ineach case was that the model reproduces the electron modulation known from deductions of the galactic spectrum and observations of the near-Earth spectrum; and also reproduces the near-Earth proton and helium nuclei spectra. The diffusion coefficients have been based upon those deduced from magnetic-field power spectra.The principal aim has been to provide estimates of radial gradients and anisotropies, particularly at kinetic energiesT100 MeV/nucleon, by the complete solution of realistic models. Typical values for protons, obtained with a galactic differential number density (total energy)–2.5, atT50 MeV are: radial gradient, 25%/AU; radial anisotropy, –0.2%; azimuthal anisotropy, 0.2%. These values change markedly when the galactic spectrum is cut-off or greatly enhanced atT<150 MeV, but the intensity spectrum near Earth remains substantially unchanged.It has been shown that it is possible to obtain negative radial gradients and positive radial anisotropies atT50 MeV for galactic particles and thus to mimic solar sources. The radial gradient for 1964–65 reported by Anderson (1968) and by Krimigis and Venkatesan (1969) are shown to be consistent with the diffusion coefficient deduced from the magnetic-field power spectrum; those reported by O'Gallagher are higher than expected and that for 20T30 MeV protons appears to be inconsistent. More precise data on conditions throughout the solar cavity are required if more definitive gradients and anisotropies are to be determined.  相似文献   

9.
The Ulysses flyby of Jupiter has permitted the detection of a variety of quasiperiodic magnetospheric phenomena. In this paper, Unified Radio and Plasma Wave Experiment (URAP) observations of quasiperiodic radio bursts are presented. There appear to be two preferred periods of short-term variability in the Jovian magnetosphere, as indicated by two classes of bursts, one with 40 min periodicity, the other with 15 min periodicity. The URAP radio direction determination capability provides clear evidence that the 40 min bursts originate near the southern Jovian magnetic pole, whereas the source location of the 15 min bursts remains uncertain. These bursts may be the signatures of quasiperiodic electron acceleration in the Jovian magnetosphere; however, only the 40 min bursts occur in association with observed electron bursts of similar periodicity. Both classes of bursts show some evidence of solar wind control. In particular, the onset of enhanced 40 min burst activity is well correlated with the arrival of high-velocity solar wind streams at Jupiter, thereby providing a remote monitor of solar wind conditions at Jupiter.  相似文献   

10.
The inertial effect on the structure of the magnetosphere of a rotating star is investigated, in the corotation approximation for a surrounding quasi-neutral plasma. The equation of motion reduces to a usual static balance equation between the electromagnetic and the centrifugal forces, in the rotating frame. However the MHD condition, which can be regarded as a special form of the generalized Ohm's law, is modified by the inclusion of inertial effect, with a violation of the frozen-in condition in case of a general (i.e., not restricted to corotation) plasma motion. The inertial effect on the electromagnetic field is summarized in a partial scalar potential named the non-Backus potential, which is proportional to the centrifugal potential in the corotation approximation.An approximate solution of this corotation problem is given, in which another characteristic radiusr M appears besides the light radiusr L . This radius defines a distance beyond which the inertial effect becomes dominant over the electromagnetic one, and is useful in estimating the magnitude of the terminal velocity of a centrifugal wind. A few examples of the modification of dipole magnetic field due to the inertial effect are visualized. In an oblique-rotation case, it can be seen that such a warp of the neutral sheet (the surface ofB r =0) is reproduced as observed in the Jovian magnetosphere.  相似文献   

11.
Plasma mechanism for the generation of toroidal magnetic field in the magnetosphere of Crab pulsar is presented. The mechanism is based on the development of parametric type instability in the relativistic electron-positron plasma of the pulsar magnetosphere. As a result of plasma corotation with pulsar and its magnetic field, the effect of plasma radial braking takes place and the time dependence of plasma particle radial velocity is harmonic. This triggers the development of parametric type instability in the relativistic plasma of the pulsar magnetosphere. The energy for this process is drawn from the slowing down of pulsar rotation.  相似文献   

12.
The structure of the corotating region, which forms an inner portion of a stellar magnetosphere, is reconsidered in a quasi-neutral case by taking into account the inertial effects of electrons as well as that of ions up to the first order in their mass ratio (δ=m?/m+). It is emphasized first that the magnetosphere is not globally equipotential even in the frame rotating with a central star (i.e. ?#0, where ? is the ‘non-Backus’ potential) due at least to the inertial effects of plasma particles. However, it is shown that the condition ?=0 is asymptotically recovered in the corotating region owing to the presence of the drift current which can be taken into account only when δ is not entirely neglected. This fact suggests that the deviation of the plasma motion in the outer magnetosphere from the corotation can be attributed to the non-zero ?. A globally self-consistent solution is obtained under this condition (?=0). In contrast with the solutions in the ‘force-free’ and the ‘mass-less-electron’ approximations, this solution has a disk structure in the corotation zone in which the plasma and the current density are concentrated to a thin disk near the magnetic equator. Owing to this sheet current in the disk the lines of force of the stellar magnetic field are modified to form a very elongated shape (the magnetodisk) if the plasma β-value is fairly large. Such a disk structure seems to be a common feature in the high β inner magnetospheres of various types of stars.  相似文献   

13.
We present results from a theoretical model which has been used to investigate the modulation of the magnetosphere-ionosphere coupling currents in the Jovian middle magnetosphere by solar wind-induced compressions and expansions of the magnetosphere. We consider an initial system in which the current sheet field lines extend to 50RJ in the equatorial plane, and where the iogenic plasma in the current sheet undergoes steady outward radial diffusion under the influence of the ionospheric torque which tends to maintain corotation with the planet. We show using typical Jovian parameters that the upward-directed field-aligned currents flowing throughout the middle magnetosphere region in this system peak at values requiring the existence of significant field-aligned voltages to drive them, resulting in large precipitating energy fluxes of accelerated electrons and bright ‘main oval’ UV auroras. We then consider the changes in these parameters which take place due to sudden expansions or compressions of the magnetosphere, resulting from changes in the solar wind dynamic pressure. Two cases are considered and compared, these being first the initial response of the system to the change, determined approximately from conservation of angular momentum of the radially displaced plasma and frozen-in field lines, and second the subsequent steady state of steady outward radial diffusion applied to the compressed or expanded system. We show that moderate inward compressions of the outer boundary of the current sheet field lines, e.g. from 50 to 40RJ, are effective in significantly reducing the coupling currents and precipitation in the initial state, the latter then recovering, but only partly so, during the evolution to the steady state. Strong inward compressions, e.g. to 30RJ cause significant super-corotation of the plasma and a reversal in sense of the current system in the initial state, such that bright auroras may then be formed poleward of the usual ‘main auroral oval’ due to the ‘return’ currents. The sense of the currents subsequently reverts back to the usual direction as steady-state conditions are restored, but they are weak, and so is the consequent electron precipitation. For outward expansions of the current sheet, however, the field-aligned currents and electron precipitation are strongly enhanced, particularly at the poleward border mapping to the outer weak field region of the current sheet. In this case there is little evolution of the parameters between the initial expansion and the subsequent steady state. Overall, the results suggest that the Jovian middle magnetosphere coupling currents and resulting ‘main oval’ auroral acceleration and precipitation will be strongly modulated by the solar wind dynamic pressure in the sense of anti-correlation, through the resulting compressions and expansions in the size of the magnetosphere.  相似文献   

14.
We present results from an investigation of the plasma sheet encounter signatures observed in the Jovian magnetosphere by the Energetic Particles Detector (EPD) and Magnetometer (MAG) onboard the Galileo spacecraft. Maxima in ion flux were used to identify over 500 spacecraft encounters with the plasma sheet between radial distances from Jupiter from 20 to 140RJ during the first 25 orbits (4 years of data). Typical signatures of plasma sheet encounters show a characteristic periodicity of either 5 or 10 hours that is attributed to an oscillation in the relative distance between the spacecraft and the plasma sheet that arises from the combination of planetary rotation and offset magnetic and rotational axes. However, the energetic particle and field data also display much variability, including instances of intense fluxes having little to no periodicity that persist for several Jovian rotation periods. Abrupt changes in the mean distance between the plasma sheet and the spacecraft are suggested to account for some of the transitions between typical flux periodicities associated with plasma sheet encounters. Additional changes in the plasma sheet thickness and/or amplitude of the plasma sheet displacement from the location of the spacecraft are required to explain the cases where the periodicity breaks down but fluxes remain high. These changes in plasma sheet characteristics do not display an obvious periodicity; however, the observations suggest that dawn/dusk asymmetries in both the structure of the plasma sheet and the frequency of anomalous plasma sheet encounters are present. Evidence of a thin, well-ordered plasma sheet is found out to 110RJ in the dawn and midnight local time sectors, while the dusk magnetosphere is characterized by a thicker, more disordered plasma sheet and has a potentially more pronounced response to an impulsive trigger. Temporal variations associated with changing solar wind conditions are suggested to account for the anomalous plasma sheet encounters there.  相似文献   

15.
The spacecraft Ulysses flew through the Jovian magnetosphere during February 1992. This paper compares the magnetic field observations recorded during the inbound pass of the flyby with the electron density as derived from the URAP instrument. In general, it is expected that the density variations will anti-correlate with the magnetic field strength in order to maintain pressure balance, although there may be instances when a temperature or energy rise alone could balance the static stress. Furthermore, there is the possibility that a dynamic process could occur which would cause both the density and field magnitude to rise in unison. In the middle magnetosphere, anti-correlation is found to exist between the two data sets; however, in the outer magnetosphere (which was characterized by very disturbed fields) and in the transition region between the outer and middle magnetospheres, there is no simple relationship between the density and field. Examples of anti-correlation, temperature or energy increases and dynamic processes are found.  相似文献   

16.
It is now recognized that a number of neutral-plasma interaction processes are of great importance in the formation of the Io torus. One effect not yet considered in detail is the charge exchange between fast torus ions and the atmospheric neutrals producing fast neutrals energetic enough to escape from Io. Since near Io the plasma flow is reduced, the neutrals of charge exchange origin are not energetic enough to leave the Jovian system; these neutrals are therefore distributed over an extensive region as indicated by the sodium cloud. It is estimated here that the total neutral injection rate can reach 1027 s?1 if not more. New ions subsequently created in the distributed neutral atomic cloud as a result of charge exchange or electron impact ionization are picked up by the corotating magnetic field. The pick-up ions are hot with initial gyration speed near the corotation speed. The radial current driven by the pickup process cannot close in the torus but must be connected to the planetary ionosphere by field-aligned currents. These field-aligned currents will flow away from the equator at the outer edge of the neutral cloud and towards it at the inner edge. We find that the Jovian ionospheric photoelectrons alone cannot supply the current flowing away from the equator, and torus ions accelerated by a parallel electric field could be involved. The parallel potential drop is estimated to be several kV which is large enough to push the torus ions into the Jovian atmosphere. This loss could explain the sharp discontinuous change of flux tube content and ion temperature at L = 5.6 as well as the generation of auroral type hiss there. Finally we show that the inner torus should be denser at system III longitudes near 240° as a result of the enhanced secondary electron flux in this region. This effect may be related to the longitudinal brightness variation observed in the SII optical emissions.  相似文献   

17.
The magnetospheric plasma convection is studied, taking into account the finite conductivity along magnetic field lines. Field-aligned currents flowing at the inner boundary of the magnetospheric plasma sheet give rise to parallel electric fields which insignificantly affect the convection on the ionospheric level but change drastically the convection system in the magnetosphere. Intense azimuthal convective streams arise along both sides of the plasma sheet boundary. A part of convection lines appears to be completely closed in the inner magnetosphere.  相似文献   

18.
During its flyby of Jupiter in February 1992, the Ulysses spacecraft passed through the Southern Hemisphere dusk-side Jovian magnetosphere, a region not previously explored by spacecraft. Among the new findings in this region were numerous, sometimes periodic, bursts of high energy electrons with energies extending from less than 1.5 MeV to beyond 16 MeV. These bursts were discovered by the High Energy Telescope (HET) and the Kiel Electron Telescope (KET) of the COSPIN Consortium. In this paper we provide a detailed analysis of observations related to the bursts using HET measurements. At the onset of bursts, the intensity of > 16 MeV electrons often rose by a factor of > 100 within 1 min, and multiple, pulsed injections were sometimes observed. The electron energy spectrum also hardened significantly at the onset of a burst. In most bursts anisotropy measurements indicated initial strong outward streaming of electrons along magnetic field lines that connect to the southern polar regions of Jupiter, suggesting that the acceleration and/or injection region for the electrons lies at low altitudes near the South Pole. The initial strong outward anisotropies relaxed to strong field-aligned bidirectional anisotropies later in the events. The bursts sometimes appeared as isolated events, but at other times appeared in quasi-periodic series with a period of 40 min. For smaller events shorter periods of the order 2–3 min were also observed in a few cases. For large events, multiple injections were sometimes observed in the first few minutes of the event. Radio bursts identified by the Ulysses URAP experiment in the frequency range 1–50 kHz were correlated with many of the electron bursts, and comparison of the time-intensity profiles for radio and electrons shows that the radio emission typically started several minutes before the electron intensity increase was observed. For the strongest electron bursts, small increases in the low energy (> 0.3 MeV) proton counting rates were also observed. Using a computerized identification algorithm to pick out bursts from the data record using a consistent set of criteria, 121 events were identified as electron bursts during the outbound pass, compared to only three events that satisfied the same criteria during the inbound pass through the day-side magnetosphere. No similar electron burst events have been found outside the magnetopause. Estimates of the electron content of a typical large burst (> 1027 electrons) suggest that these bursts may make significant contributions to the fluxes of electrons observed in Jupiter's outer magnetosphere, and in interplanetary space.  相似文献   

19.
A rotation-dominated magnetosphere is unstable to magnetic flux-tube interchange motions if and only if the plasma content of a unit magnetic flux tube is a decreasing function of distance from the spin axis. For a spin-aligned dipole field the marginally stable distribution is approximately ρr9/2 = constant, where ρ is the plasma mass density at the radial distance r in the equatorial plane. Plasma filling the Jovian magnetosphere from internal sources would initially violate this stability criterion so that interchange motions would act to establish the marginally stable distribution.  相似文献   

20.
We derive the expression for the ponderomotive force in the real multicomponent magnetospheric plasma containing heavy ions. The ponderomotive force considered includes the induced magnetic moment of all the species and arises due to inhomogeneity of the traveling low-frequency electromagnetic wave amplitude in the nonuniform medium. The nonlinear stationary force balance equation is obtained taking into account the gravitational and centrifugal forces for the plasma consisting of the electrons, protons and heavy ions (He+). The background geomagnetic field is taken for the dayside of the magnetosphere, where the magnetic field have magnetic “holes” (Antonova and Shabansky in Geomagn. Aeron. 8:639, 1968). The balance equation is solved numerically to obtain the nonlinear density distribution of ions (H+) in the presence of heavy ions (He+). It is shown that for frequencies less than the helium gyrofrequency at the equator the nonlinear plasma density perturbations are peaked in the vicinity of the equator due to the action of the ponderomotive force. A comparison of the cases of the dipole and dayside magnetosphere is provided. It is obtained that the presence of heavy ions leads to decrease of the proton density modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号