首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Abstract

Surcharge preloading consolidation of soft soils often implements a layer of fully arranged aggregate materials. The volume of drained water is abundant at the early stage of consolidation, but it reduces at middle and later stages, during which the fully arranged sand blanket will be a waste. In this investigation, a concept of distributed sand blankets is proposed to save aggregate materials. A series of finite element analyses have been performed on layered soils with distributed sand blankets. A mixed type of drainage boundary is assigned to a representative model, where a half sand blanket is perfectly pervious and a half width of soil among sand blankets is impervious. From parametric study, it has been found that a pave ratio between sand blankets and the total soil width can be selected in a range of 40%–60%, which will save aggregates by approximately 50% but cause an increase of consolidation time by less than 10%. For a fixed pave ratio, more evenly spaced sand strips with smaller width should be employed to optimize the design. The effectiveness of distributed sand blankets is not influenced by the anisotropy of hydraulic conductivity, elastic modulus, Poisson’s ratio, and thickness in multiple soil layers.  相似文献   

2.
Vacuum preloading is often used to improve the geotechnical properties of dredged slurry. Although the performance of this method has improved with rapidly developing technology, soil columns usually formed on the drainage boundary induce the decrease of permeability around the boundary, thereby limiting the further development of this method. To address this issue, this paper proposes a method for pretreating the slurry combined with sand prior to vacuum consolidation. This method partially replaces the fine particles with sand to reduce the formation of soil columns. Two groups of vacuum preloading tests were performed to investigate the effect of sand content and sand grain size on the vacuum consolidation of dredged slurry. The test results revealed that for a given sand grain size, increasing the sand content of the sand–slurry mixture increased the pore water drainage and accelerated the dissipation of pore water pressure, thereby increasing the vane shear strength. In contrast, for a constant sand content, the samples containing coarse sand exhibited increased pore water drainage and accelerated dissipation of pore water pressure, thereby increasing the vane shear strength of the soil.  相似文献   

3.
Abstract

Air booster vacuum preloading method is a useful method for strengthening dredged slurry. Though this method is improved effectively with the rapidly developed technology, the problem of inadequate reinforcement in deep layers of soil is still in existence. In view of the fact that the pressurizing system can effectively enhance the reinforcement effect. Therefore, this paper discusses the reinforcement effect of a new pressurizing system that put the booster pipeline at the bottom of soil. Meanwhile, another problem is found that the booster pipeline type was single at present, the action effect of different kind of booster pipeline is still uncertain. In this paper, laboratory experiments are performed to investigate the influence of two kinds of pressurization position and two types of booster pipeline on the treatment of five dredged slurry samples. The test results showed that though the vertical pressurizing system can be good to reinforce the middle soil layers, but the bottom pressurizing system can make the whole soil layer more homogeneous. Furthermore, the difference of the two kinds of booster pipeline on the reinforcement effect of soil is not significant. These results provide good guidance for practical application of air booster vacuum preloading in land reclamation project.  相似文献   

4.
Abstract

Compared with traditional vacuum preloading, air booster vacuum preloading is more effective at strengthening dredged slurry and improving the consolidation process. Although many engineering practices have shown that the pressurized duration has a significant effect on the reinforcement effect, there is no standard available for determining the pressurized duration. In this study, five dredged slurry samples were tested to examine the effect of different pressurized durations on the consolidation. An extensive monitoring system was used to measure the vacuum pressure, pore water pressure, settlement, and water discharge during the test, while the water content and shear strength were measured after the test. The collected monitoring data were comprehensively analyzed to evaluate the reinforcement effect. The results revealed that the pressurization system can be used to reinforce deep dredged slurry and make the whole soil layer more homogeneous. If the pressurized duration is too short, the dissipation of pore water pressure is too little to achieve the pressurization effect. If the pressurized duration is too long, too much gas will be in the soil and enter the vacuum system, which will significantly reduce the vacuum pressure and thus the reinforcement effect. Based on these findings, the optimal pressurized duration was obtained.  相似文献   

5.
Conventional drainage consolidation methods cause significant energy consumption and environmental issues. In this paper, a method combining siphon drainage and surcharge loading is proposed to drain water from soft soil with vertically installed prefabricated vertical drains (PVDs) and a siphon tube. To investigate the availability and effectiveness of this method, a laboratory physical modeling test was conducted to investigate the drainage and consolidation behavior. The laboratory modeling test results of this method were compared with the calculated results of the ideal sand-drained ground consolidation method to clarify the advantages and mechanism of this method. Comparison results show that the pore pressure and settlement in the proposed method developed faster than the calculation results of ideal sand-drained consolidation theory. About 10?m thickness of unsaturated zone can be formed by siphon drainage which produce a surcharge loading effect on the soil below the flow profile. Drainage is a very slow process in soft soil, and siphon drainage can work continually. Siphon drainage combined with surcharge loading is potentially a good alternative to drain water from soft clay economically and environmentally.  相似文献   

6.
In the conventional analysis of Biot’s axisymmetric consolidation, the solid phase and the surrounding fluid were often assumed incompressible for simplicity. Such assumption in soil engineering ignored the effect of compressibility of constituents on the consolidation. In this article, the compressible fluid and solid in soil were taken into account for 3-D consolidation. The pore pressure, the displacements, and the stresses were expressed by two displacement functions, and the Laplace–Hankel transform was applied to set up the stiffness matrix between the generalized displacement and stress. The stiffness matrix consisted of negative exponential functions, ensuring that the computation is efficient and stable. Then the global stiffness matrix is extended by embracing the continuity of the interfaces and boundary conditions of soil base. The relationship between the generalized displacement and stress of the soil base reduces the number of unknowns of the global matrix. Such consideration reduced the number of unknowns of the global matrix and brought in more acceptable boundary conditions where the stiffness and the permeability of semi-infinite soil base can be taken into account. After the inversion of the Laplace–Hankel transform, the real solutions were obtained. The results show that the stiffness and permeability of the soil base can change the development consolidation and that the compressibility of solid particles has a great effect on the settlement in the beginning of consolidation.  相似文献   

7.
正压冲固平台是一种采用短桩加固基础的新型海洋采油平台,对于这种新型的平台结构,在结构分析和构件强度校核中必须考虑其有限元模型的基础边界条件处理问题。本文提出了正压冲固平台有限元计算模型中基础边界条件的一种简化方法,将两个水平方向的扭转自由度简化为扭转弹簧边界元,其余自由度简化为固定约束。通过计算分析得到了不同的边界约束刚度系数的取值对平台总体位移和强度校核应力的影响及变化趋势。结论是,平台结构对约束刚度系数K的反应在10^4~10^4之间时比较明显,对K的敏感度最为强烈:在此范围之外,平台反应分别接近于简支约束情况和刚性约束情况。尤其对于接近约束边界的单元,其应力变化最敏感。  相似文献   

8.
In this paper, centrifuge model tests were conducted in order to understand the deformation characteristics and behavior of sand compaction piles (SCPs) reinforced grounds in relation to area replacement ratios and penetration ratios. To simulate ground stress conditions, preliminary compaction was conducted to form grounds that maintained a certain level of strength. SCPs were installed in the grounds using compaction methods, and the relationship between loads and settlement as well as stress under rigid loading conditions were compared and analyzed. In addition, finite element analyses were conducted in order to verify the results of the centrifuge model tests and assess the effects of penetration ratios and depths on variations in stress. According to the results of the analyses, stress concentration ratios gradually decreased as depths increased, and the decreasing rate increased as penetration ratios decreased. However, in regions close to the surface layer in depth in which SCPs were installed, stress concentration ratios showed almost the same range regardless of penetration ratios. Stress concentration ratios showed proportional relations with penetration ratios. However, they showed similar values in regions close in depth to the surface of the ground. In particular, they showed very close ranges at penetration ratios of 100% and 80%.  相似文献   

9.
开发了一种新型平台桩靴,可通过活动板转动实现自升式平台不同阶段桩靴受力面积的灵活变化。基于大变形有限元方法,模拟新型桩靴基础在“砂-黏”地层中的贯入过程,分析了活动板转角、砂层厚度比、摩擦角和黏土层不排水抗剪强度对新型桩靴贯入阻力的影响,并与普通桩靴的贯入响应比较。数值分析中,上覆砂土和下层黏土分别采用摩尔库伦模型和修正Tresca模型进行模拟。结果表明:新型桩靴穿刺时,土层参数对峰值阻力的影响规律与普通桩靴相同,但其峰值阻力随活动板转角的变化而变化,无法直接使用具有等效面积普通桩靴的穿刺预测方法。考虑各项关键影响因素,结合穿刺破坏时的地基破坏模式,基于数值模拟结果提出了适用于新型桩靴的贯入阻力预测公式。  相似文献   

10.
Current floating structures require more reliable and higher anchoring capacities because of their increased size. A suction anchor is one of the most popular anchors for a floating system. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was subjected to mainly a horizontal load. Three-dimensional finite element numerical analyses were carried out using ABAQUS, and three centrifuge tests were performed to calibrate the numerical analyses. A parametric study with different dimensions and loading points for the suction anchor was conducted. The horizontal capacity of the suction anchor was estimated, and the soil reaction distribution was analyzed when the load was applied at the optimal point. Based on the results, an analytical equation for calculating the horizontal capacity of a suction anchor was proposed that can be easily adopted for design.  相似文献   

11.
12.
Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical advantage of the solution in the radial direction allows SIFs to be directly determined from its definition, therefore no special crack-tip treatment is necessary. Furthermore anisotropic material behavior can be treated easily. Different distributions of surface tractions are considered for the center and double-edge-cracked disks. The benchmark examples are modeled and an excellent agreement between the results in the present study and those in published literature is found. It shows that SBFEM is effective and possesses high accuracy. The SIFs of the cracked orthotropic material circular disks subjected to different surface tractions are also evaluated. The technique of substructure is applied to handle the multiple cracks problem.  相似文献   

13.
A time-dependent finite element method (FEM) is developed to analyze the transient hydroelastie responses of very large floating structures (VLFS) subjected to dynamic loads. The hydrodynamic problem is formulated based on the linear theory of fluid and the structural response is analyzed based on the thin plate theory. The FEM truncates the unbounded fluid domain by introducing an artificial boundary surface, thus defining a finite computational domain. At this boundary surface an impedance boundary conditions are applied so that no wave reflections occur. In the proposed scheme, all of the procedures are processed directly in time domain, which is efficient for nonlinear analyses of structure floating on unbounded fluid. Numerical results indicate acceptable accuracy of the proposed method.  相似文献   

14.
采用卷管法铺设管道时,管道和铺设设备之间的接触作用十分复杂,并且管道在弯曲过程中将会产生塑性变形并可能发生局部屈曲,导致管道失效。基于有限元模型(FEM)实时模拟卷管法安装的整个过程,研究管道与铺设设备之间的接触作用;分析管道对于环境载荷和船体运动的动态响应;获得管道的应力应变值以校核局部屈曲。研究结果表明,管道弯矩大部分来源于管道与安装设备间的接触作用,而环境载荷及船体运动对管道的弯曲应力影响较小。  相似文献   

15.
Abstract

An elastoplastic, dynamic, finite-difference method was applied to study the effects of nonlinear seismic soil–pile interaction on the liquefaction potential of marine sand with piles. The developed model was well validated using the centrifuge test. The results showed that acceleration, bending moment, and excess pore water pressure complied well with centrifuge test results. The effect of different affecting parameters on liquefaction potential was investigated using parametric study. Using a sensitivity analysis, the pile embedment parameter was shown to be the most influential parameter. Finally, applying the evolutionary polynomial regression technique, a new model for predicting the liquefaction potential was presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号