首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 8 毫秒
1.
土体疲劳对打桩分析的影响   总被引:1,自引:0,他引:1  
在动力沉桩过程中,桩长时间连续运动导致桩侧土体强度的降低,使土体产生疲劳效应。结合一维应力波动理论,桩土相互作用模型和土体疲劳的不同计算方法,编制计算软件,对渤海某油田采油平台的桩基工程进行打桩分析,预测沉桩过程所需的锤击数、桩周土静阻力以及桩的极限承载力。比较不同的桩侧土体疲劳计算模式的分析结果,并用工程实测数据验证计算值。为工程设计和施工提供参考。  相似文献   

2.
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.  相似文献   

3.
考虑桩土作用独桩海洋平台横向振动特性研究   总被引:5,自引:0,他引:5  
采用动Winkler弹性地基梁模型模拟桩土问动力相互作用,并考虑了流体与桩问相互作用,通过组合成层土中、水中桩单元的刚度阵,推得了独桩海洋平台连续系统横向振动的动刚度阵及在波浪力作用下平台甲板处的频率响应函数,进而求得了在确定性波浪力及随机波浪力作用下桩身任意点的位移响应。最后,通过算例研究和分析了在随机波浪力作用下成层土参数、甲板上重量及冲刷淘深等因素对平台振动响应的影响。  相似文献   

4.
Monopod caisson foundation is a viable alternative for supporting offshore wind turbines located at shallow water depths. This foundation system has to resist overturning moment generated due to resultant lateral load, arising from wind and water wave action, that can act at any loading height above the seabed. This paper presents results of a numerical investigation performed to determine the influence of loading height, caisson geometry and superstructure load on the ultimate lateral capacity, initial stiffness, and soil failure zone of the foundation, when installed in very dense sand. Both the ultimate and serviceable states of the caisson foundation obtained from the analyses are represented in terms of envelopes plotted between lateral load and overturning moment. Simplified expressions, which take into account the influence of caisson geometry, loading height, and soil properties, are also presented to serve as a preliminary base for design of the monopod caisson foundation.  相似文献   

5.
6.
A dynamic response analysis in the frequency domain is presented for risers subjected to combined wave and current loading. Considering the effects of current, a modified wave spectrum is adopted to compute the linearized drag force. An additional drag force convolution term is added to the linearized drag force spectrum, therefore the error is reduced which arises from the truncation of higher order terms in the drag force auto-correlation function. An expression of linearized drag force spectrum is given taking the relative velocity into account. It is found that the additional term is a fold convolution integral. In this paper dynamic responses of risers are investigated, while the influence of floater motion on risers is considered. The results demonstrate that the accuracy of the present method reaches the degree required in time domain analysis.  相似文献   

7.
In this artice, the influence of clay content on the wave-induced liquefaction in marine sediments was reported. The one-dimensional (1-D) equipment was setup with a vertical cylinder and 1.8–m–thick clayey sandy deposit and 0.2–m–thick water above the deposit. Unlike the previous experimental study for a single soil layer, this study used sand-kaolin mixtures, sand-illite mixtures, and sand-bentonite mixtures as the experimental samples. A series of experiments with 3,000 wave cycles in each test were conducted under numerous wave and soil conditions, which allowed us to examine the influence of clay content (CC) on wave-induced liquefaction in marine sediments. The experimental results showed that the clayey sandy deposit will become prone to liquefaction with the increase of CC when CC is less than a critical value, which depends on the type of clay. However, when CC is greater than the critical value, liquefaction depth will decrease as CC increases. Furthermore, when the CC value reaches a certain level, liquefaction will not occur. For example, no liquefaction occurs when CC ≥ 33% for both kaolin-sand and illite-sand mixtures and CC ≥ 16.36% for bentonite-sand mixtures.  相似文献   

8.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

9.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

10.
In this article, two full-scale pile loading tests were conducted to observe the field performance of the super-long bored piles, and a simplified approach for nonlinear analysis of the load-displacement behavior of a single pile was presented. The field tests on piles indicates that, under the maximum test load, more than 70% of the pile top settlement is caused by the compression of pile shaft. For practical purposes, the pile top settlement can be reduced through improving the pile shaft strength. When the load reaches the maximum test load, the proportion of the load carried by the pile tip is approximately 30%. The super-long pile is functioning as an end-bearing friction pile. The skin friction at shallow depth is fully mobilized and decreases from a peak value with increasing load. However, the skin friction of deeper soil is not fully developed due to less relative displacement. Furthermore, a BoxLucas1 model is used to capture the relationship between unit skin friction and pile-soil relative displacement, whereas a hyperbolic model is used to describe the relationship between toe stress and pile base displacement. Based on the BoxLucas1 model and the hyperbolic model, a load transfer method is used to clarify the response of a single pile, and a computational flow chart is developed. The efficiency and accuracy of the present method is verified using the field tests on piles. The proposed simple analytical approach is economical and efficient, resulting in savings in time and cost.  相似文献   

11.
插拔桩对黄河水下三角洲浅层土的扰动及恢复研究   总被引:1,自引:0,他引:1  
黄河水下三角洲埕岛海区浅部地层自上而下主要有三种结构类型:厚层粉土-软弱粉质粘土型、薄层粉土-软弱粉质粘土层型和厚层软弱粉质粘土层-粉土或粉质粘土层型。具桩靴平台在研究区内进行插拔桩,扰动或破坏表层土,拔桩后形成桩坑。桩坑的恢复夷平和坑内回淤土层性质直接影响后期海洋工程进行。本研究利用浅地层剖面仪、声纳、野外钻探及室内实验等方法对桩坑内外土体的性质进行了探测。探测结果表明,三种类型底土在插拔桩后,回淤地层结构及其物理力学性质与原地层比较,有较大差异。  相似文献   

12.
近年来,在各种近海建筑物的建设中,桩基础被越来越广泛地应用。关于海床内桩基各层位对波浪动力响应相位差的研究,国内外学者研究的重点主要集中在海床内各层位孔隙水压力的相位变化。而关于波浪作用下海床各层位土体总压力相位的研究则很少。本研究采用波浪水槽实验,在土床未扰动和土床扰动液化两种工况下,分别施加不同波高的波浪,对底床各层位土体总压力的相位进行对比研究。实验结果表明,当土体未运动时,在渗透性和饱和度均匀的土体中,各层位土体之间不存在相位差。当底床液化后,土体出现显著分层现象,在液化土层和不动土层间存在显著的相位差。此时,总压力振幅呈现先增大后减小的现象,且在床面下-10cm处出现最大值。  相似文献   

13.
This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite e  相似文献   

14.
Most field tests are carried out using working piles for verification purposes in China, and loading tests are terminated before achieving true pile capacity. In this work, two full-scale destructive loading tests on tension piles instrumented with strain gauges were conducted to capture true pile capacity. The load-displacement response, load transfer, and threshold of the pile-soil relative displacement for fully mobilizing skin resistance in the uplift case were discussed. It was found that the shaft resistance degradation is observed to be along the pile depth with a reduction factor of 0.905 to 0.931, and the thresholds of pile-soil relative displacement for fully mobilizing skin resistance of the tension pile in different soils are found to be in the range 0.67% to 1.34% of the pile diameter. Based on the field test results, a simple softening model was proposed to describe the degradation behavior of skin friction along the pile-soil interface. Further study was conducted to assess the influence of the threshold of pile-soil relative displacement for fully mobilizing skin friction and the reduction factor on the skin friction. As to the analysis of the response of single pile subjected to tension load, a highly effective iterative computer program was developed using the proposed skin friction softening model. Comparisons of the load-settlement response for the well-instrumented tests were given to demonstrate the effectiveness and accuracy of the proposed simple method.  相似文献   

15.
Abstract

With the large-scale development and utilization of ocean resources and space, it is inevitable to encounter existing submarine facilities in pile driving areas, which necessitates a safety assessment. In this article, by referring to a wharf renovation project as a reference, the surrounding soil response and buried pipe deformation during pile driving in a near-shore submarine environment are investigated by three-dimensional (3D) numerical models that consider the pore water effect. Numerical studies are carried out in two different series: one is a case of a single pile focusing on the effect of the minimum plane distance of the pile–pipe, and the other is a case of double piles focusing on the effect of the pile spacing.  相似文献   

16.
针对我国南海某岛礁珊瑚砂地基上的圆形桩基础,采用N-S方程k-ε模型、双向耦合方式跟踪流场中颗粒运动轨迹的方法,对桩周珊瑚砂的冲刷规律进行了求解,分析了桩体周围流体的速度场以及桩体表面剪应力场的分布规律,同时对桩周珊瑚砂冲刷坑的形成过程进行了模拟。计算结果表明,在桩体周围形成的马蹄形漩涡和桩柱后方的尾涡作用下,桩周土体出现了较为明显的冲刷现象,涡旋的释放显著地影响着珊瑚砂地基上桩基的冲刷坑形状;而且,由于珊瑚砂颗粒密度较石英砂小,水动力作用下桩周冲刷坑更容易形成,所以实际工程中需要考虑有效的防护措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号