首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Radiolarian fossil study in the sediment cores collected during the pre- and postdisturbance cruises of the Environmental Impact Assessment (EIA) Indian Ocean Experiment (INDEX) program of deep sea mining in the Central Indian Ocean Basin suggests a pronounced directional deposition of fossil radiolarians exhumed during the deep sea benthic disturbance experiment. The relative occurrences of the Stylatractus universus species that became extinct ~0.425 million years before present were mostly confined to the older and deeper strata of the sediment of the disturbance tract in the southwestern direction. This pattern is remarkable and suggests that the disturbance plume has been preferentially redeposited in the southwestern direction. This observation is in concurrence with the prevailing southwestern abyssal current during the disturbance experiment in the Central Indian Basin.  相似文献   

2.
Abstract

Particle fluxes were measured 7 m above the sea bottom during the predisturbance, disturbance, and postdisturbance periods by using time series sediment traps attached to seven deep-sea moorings deployed in the INDEX experiment site in the Central Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m?2 day?1. Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more than the background predisturbance fluxes. The increases in particle fluxes (~4 times) recorded by the sediment trap located in the southwestern direction (DMS-1) were the greatest, which could be the result of preferential movement of resuspended particles generated during the deep-sea benthic disturbance along the general current direction prevailing in this area during the experimental period. Also, the traps located closer to the disturbance area recorded greater fluxes than did the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended particles produced during the disturbance had an important effect on particle movement. The postdisturbance measurements during ~5 days showed a reduction in particle fluxes of ~50%, indicating rapid particle settlement.  相似文献   

3.
Particle fluxes were measured 7 m above the sea bottom during the predisturbance, disturbance, and postdisturbance periods by using time series sediment traps attached to seven deep-sea moorings deployed in the INDEX experiment site in the Central Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m -2 day -1 . Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more than the background predisturbance fluxes. The increases in particle fluxes (~4 times) recorded by the sediment trap located in the southwestern direction (DMS-1) were the greatest, which could be the result of preferential movement of resuspended particles generated during the deep-sea benthic disturbance along the general current direction prevailing in this area during the experimental period. Also, the traps located closer to the disturbance area recorded greater fluxes than did the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended particles produced during the disturbance had an important effect on particle movement. The postdisturbance measurements during ~5 days showed a reduction in particle fluxes of ~50%, indicating rapid particle settlement.  相似文献   

4.
Abstract

The response of sediment bacteria and biochemical variables to benthic disturbance was investigated in the Central Indian Ocean Basin from cores at nine stations. Generally, bacterial density and biochemical variables declined vertically with depth in the upper layers of the cores. Mechanical disturbance caused by a hydraulic disturber brought about a substantial decrease in total bacterial numbers. However, the numbers of retrievable bacteria increased by two orders of magnitude. The biochemical parameters decreased in quantity with a shift in the linear relationship. The data suggest that abiotic artifacts will directly affect the biomass and biochemistry of the sediment.  相似文献   

5.
In order to assess the impact of deep-sea mining on the in situ benthic life, we measured the microbial standing stock and concentration of organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin in the Indian pioneer area. Sediments were collected using box core and grab samples during September 1996. The total bacterial numbers ranged from 10 10 -10 11 cells per g -1 dry weight sediment. There was a marginal decrease in the number of bacteria from surface to 30 cm depth, though the subsurface section registered a higher number than did the surface. The highest numbers were encountered at depths of 4-8 cm. The retrievable number of bacteria were two orders less in comparison with the direct total counts of bacteria. An almost homogeneous distribution of bacteria, total organic carbon, living biomass, and lipids throughout the depth of cores indicates active microbial and benthic processes in the deep sea sediments. On the other hand, a uniform distribution of total counts of bacteria, carbohydrates, and total organic carbon in all the cores indicates their stable nature and suggests that they can serve as useful parameters for long-term monitoring of the area after the benthic disturbance. Further studies on temporal variability in this region would not only verify the observed norms of distribution of these variables but would also help to understand restabilization processes after the simulated benthic disturbance.  相似文献   

6.
The Indian Deepsea Environment Experiment (INDEX) was conducted in the Central Indian Ocean Basin, to assess the effects of a simulated disturbance on the marine ecosystem and to collect data to predict the effects of large-scale mining. To select the Test and Reference areas for benthic disturbance, detailed studies were carried out for a better understanding of the topgraphic undulations and nodule distribution in five preselected areas of 10 ×10 nautical miles each. Flat topography was one of the important considerations for selection of the areas, because this would allow further dispersion of sediment plume and offer easier maneuverability of the benthic disturber. Relatively low nodule abundances were also preferred, to prevent clogging of the suction device used for resuspension of sediment. On the basis of morphological analysis and nodule distribution, two areas, T1 and A1, were selected as the best suited pair for the disturbance and monitoring experiment.  相似文献   

7.
Abstract

Twenty-four stations (12 each, during pre- and postdisturbance studies) 5300 to 5330 m deep between 10°01' and 10°03'S latitude and between 75°59' and 76°02'E longitude were sampled to study the effect of benthic disturbance on the distribution of meiofauna in the Central Indian Ocean. Bottom-sampling was conducted with a box corer. Total meiofauna density ranged from 35 to 45 organisms per 10 cm2 of bottom area during the predisturbance period and 21 to 32 organisms per 10 cm2 during the postdisturbance period in the test and reference sites. Differences between pre- and postdisturbance study results were statistically significant (P < 0.05). Nematoda was the most abundant meta-zoan group, on an average representing >55% of the meiofaunal population. The abundance of nematodes and harpacticoid copepods as well as total meiofauna showed marked decreases during postdisturbance sampling. Vertical distribution of meiofauna in the sediment cores revealed that 75% to 90% of the metazoan population was confined to the top 2-cm layer of the sediment. Recolonization experiments suggest that harpacticoid copepods may take more time for recolonization than the nematodes and are more sensitive to the physical disturbance. These findings suggest that nematodes and harpacticoid copepods can be used as indicator organisms in recolonization experiments.  相似文献   

8.
The response of sediment bacteria and biochemical variables to benthic disturbance was investigated in the Central Indian Ocean Basin from cores at nine stations. Generally, bacterial density and biochemical variables declined vertically with depth in the upper layers of the cores. Mechanical disturbance caused by a hydraulic disturber brought about a substantial decrease in total bacterial numbers. However, the numbers of retrievable bacteria increased by two orders of magnitude. The biochemical parameters decreased in quantity with a shift in the linear relationship. The data suggest that abiotic artifacts will directly affect the biomass and biochemistry of the sediment.  相似文献   

9.
The abundance of baroduric bacteria from nine sediment cores (0–10 cm below sea floor) was examined for their response to simulated benthic disturbance in the Central Indian basin (CIB). While the total counts of bacteria decreased from 109 to 106 g?1 dry wt sediment, the average retrievable counts (CFU-colony forming units) improved by two orders of magnitude, i.e., from 102 104 g?1 dry wt sediment. The baroduric retrievable forms were dominated by Acinetobacter and Moraxella sp before the disturbance. After the disturbance the generic diversity was represented by Staphylococcus sp, Enterobacter sp, Micrococcus sp, Coryneforms sp, and Pseudomonas sp in addition to Acinetobacter. These observations were corroborated by changes in enzymatic activities of the retrievable bacteria, which could lead to changes in the biochemical characteristics of the sediment. Thus the simulated disturbance brought about an increase in culturable abundance, taxonomic and functional diversity of deep-sea sediment of the CIB.  相似文献   

10.
As a part of the Environmental Impact Assessment studies for nodule mining, a long-term program has been initiated in the Central Indian Basin. Multidisciplinary studies on geological, biological, physical, and chemical parameters were carried out in an area selected on the basis of baseline data collected in the first phase of the program. A benthic disturbance was simulated with a hydraulic device also used in the previous experiments in the Pacific Ocean. A site of 3,000 ×200 m was repeatedly disturbed by a combination of fluidizing pump and suction pump to dislodge and discharge sediment from the seafloor into the water column 5 m above the seafloor. During 9 days of operation, 26 tows were carried out for 47 h of disturbance, resuspending about 6,000 m 3 of sediment along an 88-km line. Data for postdisturbance impact assessment were collected with sediment traps, deep-towed cameras, seafloor samples, and conductivity-temperature depth sensor (CTD)-rosette observations. Seafloor data, sediment samples, and water column studies were aimed at evaluating the impact of benthic disturbance, on the basis of pre- and postdisturbance data collected during the experiment. Observations show that vertical mixing of sediment as well as its lateral movement and resedimentation because of plume migration alters various parameters and leads to changes in the environment around the area.  相似文献   

11.
Abstract

The granulometry of 21 box core sediments from five selected sites in the Central Indian Basin (CIB) have been studied to understand the sediment size characteristics in the Pioneer area before the benthic disturbance experiment. The sediments are predominantly clayey silt. Statistical parameters were determined to understand the control and variations in the grain size. The mean grain size (Mzφ) ranged from 7.0 to 8.6 for the surface and from 6.6 to 8.6 for the subsurface sediments, indicating deposition of very fine fractions during the Neogene period. The sediments were poorly sorted as revealed from the higher ρ1 values (2.7 to 2.9). Higher and negative values of skewness (SK1) indicated a winnowing action of prevailing currents in the area. Average kurtosis (KG) values for the surface (0.4 to 0.8) and subsurface (0.5 to 1.2) showed that sediments were very platykurtic and leptokurtic. Clay mineralogical studies showed that smectite had a wider range (from 6% to 55%) and decreased southward because of its terrigenous origin. The terrigenous influence of the sediments could be documented as far as 12°S. Smectite and kaolinite increased eastward and chlorite decreased southward. This observation positively correlated with the mean current direction in the area. However, the influence of Antarctic Bottom Water (AABW) in the area could be predicted from the southward increase in chlorite content.  相似文献   

12.
Abstract

The rare earth element (REE) distribution in nine deep-sea ferromanganese nodules and their associated siliceous sediments from the Central Indian Ocean Basin (CIOB) have been studied to elucidate the REE relationship among them. Total REE concentration varies from 398–928 ppm in the nodules and 137–235 ppm in the associated sediments, suggesting two- to four-fold enrichment in the nodules compared to associated sediments. REE of nodules and their associated sediments show a positive correlation, suggesting REE are supplied from a common source such as seawater. The positive correlation between REE of nodules and sediments from the CIOB is contrary to the competitive scavenging of REE between nodules and sediment in the equatorial Pacific Ocean. REEs in the nodules are carried by Fe, P, and Ti, whereas in the sediment they are carried by P and Mn phases. A similar REE fractionation pattern with middle REE enrichment over heavy and light REE in both the nodules and their associated sediment suggest fractionation is independent of REE abundance and their carrier phases.  相似文献   

13.
董岳  滕辉  邱云  林新宇 《海洋学报》2022,44(6):37-47
本文主要利用1958–2016年GECCO2等资料通过超前/滞后相关分析方法,分析了南印度洋海表温度距平(SSTA)冬季?冬季重现的时空特征,并探讨了海洋和大气强迫对其形成的贡献。结果显示,SSTA冬季?冬季重现主要发生在南印度洋15oS以南海域,特别是在马达加斯加岛至澳大利亚西南部之间的海域(15o~45oS,70o~100oE)重现信号最为显著。重现信号除了主要发生在次年冬季外,在部分海域重现信号发生较早,可在次年秋季发生并持续至随后的冬季。进一步分析表明,混合层深度冬深夏浅的变化(即海洋重现机制)是研究海域SSTA冬季重现的主因。另外,在马达加斯加岛南部海域和澳大利亚西南部海域海面净热通量对SSTA的重现也有直接的贡献。  相似文献   

14.
Abstract

The advanced piston cover (APC) has been used by the Ocean Drilling Program since 1985 for recovering soft sediments from the ocean floor. The pullout force measured on extracting the core barrel from the sediment is shown to correlate with the average shear strength of the sediment core measured in the ship's laboratory. A simple rule of thumb is derived relating the shear strength of the sediment to the pullout force. Multiple APC holes at individual sites allow the consistency of the pullout measurements to be assessed. The effects of different operational procedures during APC coring are also explored. Although generally applicable, the correlation between pullout force and laboratory measurements of shear strength breaks down for some APC holes, possibly because of the disturbance of some sediment types during the APC coring process. A better understanding of the physical process of APC coring, and its effect on the properties of the sediment both inside and immediately outside the core barrel, would indicate what confidence can be put on the measurement of pullout force as a way of evaluating the in situ shear strength of deep sea sediments.  相似文献   

15.
The biological pump is a central process in the ocean carbon cycle, and is a key factor controlling atmospheric carbon dioxide (CO2). However, whether the Arctic biological pump is enhanced or reduced by the recent loss of sea ice is still unclear. We examined if the effect was dependent on ocean circulation. Melting of sea ice can both enhance and reduce the biological pump in the Arctic Ocean, depending on ocean circulation. The biological pump is reduced within the Beaufort Gyre in the Canada Basin because freshwater accumulation within the gyre limits nutrient supply from deep layers and shelves hence inhibits the growth of large-bodied phytoplankton. Conversely, the biological pump is enhanced outside the Beaufort Gyre in the western Arctic Ocean because of nutrient supply from shelves and greater light penetration, enhancing photosynthesis, caused by the sea ice loss. The biological pump could also be enhanced by sea ice loss in the Eurasian Basin, where uplifted isohaline surfaces associated with the Transpolar Drift supply nutrients upwards from deep layers. New data on nitrate uptake rates are consistent with the pattern of enhancement and reduction of the Arctic biological pump. Our estimates indicate that the enhanced biological pump can be as large as that in other oceans when the sea ice disappears. Contrary to a recent conclusion based on data from the Canada Basin alone, our study suggests that the biological CO2 drawdown is important for the Arctic Ocean carbon sink under ice-free conditions.  相似文献   

16.
Natural kilometer-scale spatial variability and seasonal variability in deep-sea sediments at ∼5000 m depth was studied at two reference sites in the Central Indian Basin. Biochemical parameters such as the labile organic matter (LOM) (consisting of carbohydrates, protein and lipids) and total organic matter (TOM) and biological parameters such as total counts of bacteria and adenosine triphosphate (ATP) were estimated after an interval of 54 months. These were compared with nine locations (12–17 km away) where an artificial sediment disturbance was created by a hydraulic benthic disturber. Besides the above-mentioned parameters, extracellular enzymes, alkaline phosphatase, aminopeptidase and lipase were also monitored at these nine locations. Post-disturbance (PoD1) observations were carried out immediately after the benthic disturbance experiment and compared with the pre-disturbance (PreD) pattern. The restoration process in the test site was studied after a period of 44 months (PoD2). There was a drastic reduction in total counts of bacteria, ATP, carbohydrates and lipids accompanied by a two- to four-fold increase in protein content at the undisturbed reference sites after 54 months. A similar reduction in these parameters was observed in the PoD1 compared to the PreD stage at the test site. An initial increase in TOM content and in the activities of three extracellular enzymes in the PoD1 stage was followed by a reduction in TOM, ATP and organic P content and activities of the extracellular enzymes in the PoD2 phase (i.e. after 44 months). Reduction in ATP levels suggests a negative impact of resedimentation on living biomass in the sediments. Although LOM, protein concentrations and the protein/carbohydrate ratio increased in the PoD2 phase relative to the PoD1 phase, the bacterial numbers were below the concentrations in the PreD stage, indicating slow restoration of benthic conditions. Long-term analyses of the indicator parameters thus showed mixed effects of sediment disturbance. A similar pattern at the undisturbed reference location suggests that natural (seasonal) variability outweighed artificial variability caused by the benthic disturbance in the Central Indian Basin and the former is responsible for bringing about changes in deep-sea benthic ecosystem on long-time scales.  相似文献   

17.
During the Indian Deep-sea Environment Experiment (INDEX) conducted in the Central Indian Basin to simulate nodule mining activity, the sediments were physically disturbed, lifted from the seafloor, and then redeposited to study the effects of sediment redistribution on geological, chemical and biological characteristics of benthic environment. The first monitoring cruise, 44 months after the experiment, was part of long-term observations for restoration of conditions. This study describes the effects of the experiment on geotechnical properties of sediments measured in predisturbance, postdisturbance and monitoring phases. To compare the effects, sediment cores were collected from the same locations during the three phases. Siliceous, fine-grained sediments from the study area showed change in geotechnical properties induced due to the disturbance. Marginal increase in natural water content and significant reduction in undrained shear strength at the 0–5 cm sediment layer of cores from the tow zone during postdisturbance was observed. However, during the monitoring phase, an increase in shear strength and reduction in water content was noticed, which might indicate that the sediments are gradually acquiring predisturbance characteristics. The study also revealed that the meiofaunal density has a positive correlation with the water content, but a negative relationship with the shear strength of these siliceous sediments. Specific gravity of solids and porosity showed marginal change, whereas wet density remained unchanged.  相似文献   

18.
Data on bottom-water potential temperature, turbidity and current indications show that in the Southern Ocean west of the Kerguelen Plateau, Antarctic Bottom Water (AABW) of Weddell Sea origin spreads northwards from the Atlantic—Indian Basin in two directions: (1) AABW enters the Agulhas Basin through relatively deep areas in the Mid-Indian Ridge at 20–25°E and possibly at 35°E, and flows northwards into the Mozambique Basin as far as its northern limits; (2) a more easterly spreading path extends from the Atlantic—Indian Basin through the Crozet into the Madagascar, Mascarene, Somali and Arabian Basins. The passage in the western branch of the Indian Ridge for the AABW spreading from the Crozet into the Madagascar Basin appears to be at 29-26°S and 60–64°E.East of the Kerguelen Plateau in the South Indian Basin, the bottom water formed mainly along the Adélie Coast and Ross Sea travels west towards the Kerguelen Plateau and then parallel to it. This water finally flows eastwards hugging the Southeast Indian Ridge. Significant deviations from this general circulation pattern occur due to local topographic effects. Some AABW in the South Indian Basin exits through a passage at 120–125°E in the region of the Australian—Antarctic discordance in the Southeast Indian Ridge and enters the South Australian Basin and subsequently the Wharton Basin. This passage is clearly indicated by the northward extension of a cold, bottom-water tongue as shown by the temperature distribution in the region; the bottom-water effects in the passage are reflected in the high turbidity and current lineations on the sea floor.In the Southern Ocean basins, bottom-water turbidity is generally high, reflecting in part the strong bottom-water activity. The effects of AABW circulation on the sea floor—in the form of well-developed small- or large-scale current ripples and erosional/depositional features, manganese-nodule formations, and unconformities and reworking of sediments observed in cores — are also marked in these basins. Even though the AABW in the Wharton Basin is cold, its spreading effects on the sea floor are minimal in this basin in contrast to the basins west of the Mid-Indian Ridge at comparable latitudes.  相似文献   

19.
We examined the large-scale distribution of deep-sea harpacticoid copepods at the species level, in order to clarify the underlying processes of copepod dispersal. The study was based on samples collected from 12 regions and a total of 113 stations: 57 stations at depths between 1107 and 5655 m on abyssal plains in the South and North Atlantic, Southern Ocean, southern Indian Ocean, and the Pacific Ocean, and 56 stations above 900 m in the North Atlantic and eastern Mediterranean Sea.We chose the genus Mesocletodes Sars, 1909 as an ideal group to study the large-scale distribution of harpacticoid copepods in the deep oceans. Clear apomorphies and a comparatively large body size of about 1 mm allow rapid recognition of allied species in meiofauna samples. In addition, Mesocletodes represents more than 50% of the family Argestidae Por, 1986, one of the most abundant harpacticoid families in the deep sea.The geographical distributions of 793 adult females of Mesocletodes belonging to 61 species throughout the South and North Atlantic, Southern Ocean, southern Indian Ocean, Pacific Ocean, and eastern Mediterranean Sea indicated that most species are cosmopolitan. Neither the topography of the sea bottom nor long distances seem to prevent species from dispersing. Passive transport by bottom currents after resuspension is likely the propulsive factor for the dispersal of Harpacticoida, while plate tectonics and movement of individuals in the sediment may play relatively minor roles.  相似文献   

20.
Vertical coupling between shallow and deep mesoscale eddy processes in the southwestern Japan/East Sea is investigated using acoustic travel-time and bottom pressure measurements from a two-year deployment of an array of pressure-gauge-equipped inverted echo sounders. Canonical correlation analysis is applied to the simultaneously measured data to extract the coupled modes. The upper layer exhibits a migration of the Ulleung Warm Eddy, and correspondingly the deep potential vorticity in the Ulleung Basin adjusts in magnitude and sense to conserve potential vorticity. Coupling between meanders of strong upper currents and abyssal flows has been observed previously in the Gulf Stream during the Synoptic Ocean Prediction experiment. The evidence from our study strongly suggests that such coupling occurs also under much weaker flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号