首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical solutions have been obtained for the vertical uplift capacity of strip plate anchors embedded adjacent to sloping ground in fully cohesive soil under undrained condition. The analysis was performed using finite element lower bound limit analysis with second-order conic optimization technique. The effect of anchor edge distance from the crest of slope, angle and height of slope, normalized overburden pressure due to soil self-weight, and embedded depth of anchor on the uplift capacity has been examined. A nondimensional uplift factor defined as F owing to the combined contribution of soil cohesion (cu), and soil unit weight (γ) is used for expressing the uplift capacity. For an anchor buried near to a sloping ground, the ultimate uplift capacity is dependent on either pullout failure of anchor or overall slope failure. The magnitude of F has been found to increase with an increase in the normalized overburden pressure up to a certain maximum value, beyond which either the behavior of anchor transfers from shallow to deep anchor or overall slope failure occurs.  相似文献   

2.
Abstract

This study describes an analytical solution for determining the ultimate vertical uplift resistance of a group of two and multiple number of close-spaced shallow rectangular anchor plates embedded horizontally in sand. The analysis was performed by using an upper bound theorem of limit analysis with the employment of the kinematically admissible three-dimensional (3D) rigid wedge collapse mechanisms. Results are obtained in terms of dimensionless uplift factors Fγ and Fq due to the components of soil self-weight and surcharge pressure acting on the ground surface for a wide range of parameters. It was found that the magnitude of uplift factors decreases substantially with a decrease in the clear spacing between the anchors, soil friction angle, and embedment ratio, and an increase in the aspect ratio of anchors. Further, it was noticed that when the clear spacing between the anchors is greater than or equal to the certain critical value, the interaction effect of anchors vanishes and the magnitude of uplift factors associated with a group of anchors becomes equal to that of single isolated anchors. The present solutions are found to compare reasonably well with those theoretical, numerical, and experimental results available in the literature.  相似文献   

3.
杨枭  胡伟  孟建伟  林志 《海洋工程》2023,41(3):177-184
对于砂土中的竖向拉拔锚板,锚周土体滑动面的形态会随埋深比的增大而发生变化。基于滑动面连续演化的观点,审视了既有统一模型中滑动面形态表征函数的不足,在此基础上,提出了一种新的椭圆形态函数,并建立了相应的统一力学分析模型,提出了新的承载力计算方法。结果表明:新的形态函数能更好地反映滑动面的实际形态,承载力计算新方法也表现出了更好的适应性。  相似文献   

4.
K.D. Jones  Y. Cho 《Ocean Engineering》2007,34(16):2107-2114
An analytical solution has been developed to estimate the horizontal, vertical, and inclined loading pullout capacities of embedded suction anchors in sand. Validation of the analytical solution on pullout capacities has been made through comparisons with the centrifuge model test results. Primary variables for the centrifuge model tests are the depth to the loading point, the load inclination angle, and the addition of flanges. The results indicate that both the horizontal and vertical pullout capacities of the embedded suction anchor in sand increase, reach the peak and then start to decrease as the loading point moves downward. The inclined loading pullout capacity is very much dependent on the load inclination angle and the loading point. The effect of flanges on the pullout capacities is also found to be significant.  相似文献   

5.
王强  刘海笑  李洲 《海洋工程》2021,39(3):83-94
利用带误差控制的显式积分算法,将一种适用于饱和砂土排水循环动力分析的边界面塑性模型编写成可供有限元软件调用的用户自定义材料子程序。建立土体单元有限元数值模型对Toyoura砂的静、动排水三轴试验进行模拟,验证了模型具备合理描述砂土在不同荷载条件下力学响应的能力。建立饱和砂土中板锚循环承载分析的数值模型,针对板锚在砂土中的单调抗拔特性和循环承载特性进行数值分析,得到了与模型试验一致的荷载—位移响应规律。考察循环荷载要素对板锚循环承载特性的影响,结果发现,随着循环荷载的施加,板锚永久位移逐渐累积,循环荷载会导致板锚持续移动,循环幅值越大,初始位移和位移变化率越大;循环均值越大,初始位移越大,但位移变化率越小。  相似文献   

6.
As offshore energy developments move towards deeper water, moored floating production facilities are increasingly preferred to fixed structures. Anchoring systems are therefore of great interest to engineers working on deep water developments. Suction embedded plate anchors (SEPLAs) are rapidly becoming a popular solution, possessing a more accurate and predictable installation process compared to traditional alternatives. In this paper, finite element analysis has been conducted to evaluate the ultimate pullout capacity of SEPLAs in a range of post-keying configurations. Previous numerical studies of anchor pullout capacity have generally treated the soil as an elastic-perfectly plastic medium. However, the mechanical behaviour of natural clays is affected by inter-particle bonding, or structure, which cannot be accounted for using simple elasto-plastic models. Here, an advanced constitutive model formulated within the kinematic hardening framework is used to accurately predict the degradation of structure as an anchor embedded in a natural soft clay deposit is loaded to its pullout capacity. In comparison with an idealised, non-softening clay, the degradation of clay structure due to plastic strains in the soil mass results in a lower pullout capacity factor, a quantity commonly used in design, and a more complex load–displacement relationship. It can be concluded that clay structure has an important effect on the pullout behaviour of plate anchors.  相似文献   

7.
Uplift capacity of circular piles in sands is one important design parameter for many pile foundations supporting important structures subjected to tensile forces. Even though a number of formulas based on the limit equilibrium or semi-empirical methods are proposed to predict the uplift capacity of piles in sands, there is a major limitation of the methods in obtaining the accurate predictions. In this paper, the computational limit analysis is employed to investigate the uplift capacity of circular piles in sands. The effects of the important variables including pile length and diameter, soil friction angle and unit weight, and roughness factor at soil-pile interface are examined extensively using the dimensionless parameters while the predicted failure mechanisms associated with the parameters are discussed and compared. Approximate statistical design equations of the uplift capacity of circular piles in sands are developed based on the numerically derived solutions and the existing experimental data. It is found that the proposed design equations provide the most accurate prediction of the uplift capacity of circular piles in sands as compared to the existing formulas.  相似文献   

8.
Vertical uplift static loading tests of single model pile were conducted in the in-lab calcareous sand and quartz sand by emulating practical condition of full-size piles in site. The settlement, lateral deflection, axial force, and friction distribution of the pile are analyzed for each physical test. The pile behaviors in calcareous sand and quartz sand are compared. From the test results, it can be found that the pile top displacement of uplift pile in calcareous sand can be divided into two stages: the pile–sand synchronous stage and pile–sand asynchronous (relative displacement) stage. Data from uplift tests show that the heave of calcareous sand around pile top is very small, which is resulted from the mutually restraint of surface particle. The mutual restriction of surface particle leads to “bottleneck effect” and strengthens ultimate side friction of upper pile segment. In addition, the shear dilatancy and particle breakage of calcareous sand lead to the upper harden and the lower soften of side friction, respectively. Cases of calcareous sand and quartz sand show different responses to pile forming methods, which due to the sands’ different characteristics of particle breakage when compressed as well as plastic deformation under loading–unloading conditions.  相似文献   

9.
The results of a number of laboratory model tests for the short‐term ultimate uplift capacity of a circular plate anchor embedded in saturated soft kaolinite and montmorillonite are presented. The tests were conducted with and without venting the bottom of the plate anchor in order to determine the variation of the suction force with embedment ratio. The variation of the suction force is presented in terms of the undrained shear strength of the clay and also the net ultimate uplift capacity.  相似文献   

10.
Laboratory model test results for the uplift of a shallow circular plate anchor embedded in a soft saturated clay are presented. For all tests the bottom of the anchor plate was vented to eliminate the mud suction force. The tests were divided into two categories: (1) short‐term tests to determine the variation of the net ultimate uplift capacity and hence the breakout factor with embedment ratio, and (2) creep tests with sustained uplift loads at varying embedment ratios. Based on the model test results, the variation with time, has been determined for the rate of strain of the soil located above the plate anchor. Empirical relationships for obtaining the rate of anchor uplift have been proposed.  相似文献   

11.
In this study, the dynamic response of pile foundation in dry sandy soil excited by two opposite rotary machines was considered experimentally. A small scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of two small motors supplied with eccentric mass (0.012?kg) and eccentric distance (20?mm) representing the two opposite rotary machines, an aluminum shaft as the pile, and a steel plate a pile cap. The experimental work was achieved taking the following parameters into considerations: pile embedment depth ratio (L/d, where L is the pile length and d is its diameter) and operating frequency of the rotary machines. All tests were conducted in medium dense fine sandy soil with 60% relative density. Twelve tests were performed to measure the change in load transferred through the pile’s tip to the underlying soil. To predict precisely the dynamic load that will be induced from the rotary machines, a mini load cell with a capacity of 100?kg was mounted between the aluminum plate (the machine base) and the steel plate (pile cap). The results revealed that, before machine operation, the pile tip load was approximately equal to the static load (machine and pile cap), whereas during machines’ operation, the pile tip load decreased for all embedment depth ratios and operating frequencies. This reduction was due to the action of skin friction that was mobilized along the pile during operation, and as a result the factor of safety against pile bearing failure increases. For all operating frequencies and pile lengths, the factor of safety against bearing failure increased during machines’ operation, where the pile tip load became less than its value before starting operation. During operation, the skin friction resistance mobilized along pile length led to decrease the bearing load.  相似文献   

12.
针对海相软土地区螺旋钢管桩承载力低与腐蚀问题,提出一种新型压力注浆螺旋钢管桩,并设计5根足尺试验桩,进行现场抗拔承载性能试验,研究螺旋叶片直径与排布方式对成桩直径与桩基抗拔承载性能的影响.结果表明,成桩直径与螺旋叶片直径呈正相关,在每节延长段钢管末端设置螺旋叶片利于提高水泥土柱完整性,使成桩直径更为饱满,提高桩基的抗拔承载性能.将试验结果和现行规范抗拔极限承载力计算结果进行对比,计算结果约为实测平均值的94%,在此基础上提出压力注浆螺旋钢管桩抗拔承载力计算参数修正建议,为后续的设计提供参考.  相似文献   

13.
The passive suction of suction foundations plays a significant role in pull-out resistance. The factors influencing the uplift capacity include stress state, embedment ratio, and loading rate. This article investigates the effect of embedment ratio and loading rate on the bearing behavior of suction foundations using centrifuge testing. A series of uplift tests on a suction foundation in clay were performed using a beam centrifuge. During the tests, uplift displacement, suction, and loading rate were monitored. The suction was obtained by measurement of water pressure. To compare the influence of different factors on uplift capacity due to passive suction, two types of uplift tests were conducted; the first was on the closed caisson and the second was on the vented caisson. The results show that the pull-out resistance increased with an increase of the uplift loading rate, which was induced by the suction. The maximum resistance occurred when the upward displacements reached 14%D under a ratio of skirt length (L) to diameter (D) (L/D) of 0.5 and 17%D under an L/D ratio of 2. These findings provide a way for suction caissons to resist pull-out load or for structures to be removed from the seabed.  相似文献   

14.
透空式水平板波浪上托力计算方法   总被引:6,自引:2,他引:6  
在透空式平板波浪上托力试验研究基础上,针对实际工程应用要求,提出相对简便的透空式平板下波浪局部上托力和最大总上托力计算方法,包括上托力大小、分布宽度和发生位置。对具体工程实例的计算结果表明,该方法与实验值有着较好的一致性。  相似文献   

15.
斜坡上封闭式水平板波浪上托力分布试验研究   总被引:1,自引:1,他引:0  
通过系列模型试验,对斜坡上尾部封闭式平板结构波浪上托力沿板宽分布进行了详细分析,提出板下最大冲击压强和最大总上托力并不一定同时出现,其分布形态可分为局部冲击型和均匀型。由于封闭空气层和底部斜坡影响,较大总上托力形成机理不尽一致,其均匀分布宽度也不相同,可分为气压型和反射型两类,由此提出分类标准,并分别得到压强分布的计算公式。  相似文献   

16.
基于土体塑性极限分析理论,推导一般黏性土地基上矩形基础承载力的上限解。为了证实上限解的合理性与适用性,采用大型通用有限元分析软件ABAQUS进行数值分析,并分别与Vesic理论解和Salgado et al理论解进行了对比。结果表明,推导的三维矩形基础上限解能较好地计算黏性土地基的极限承载力。  相似文献   

17.
通过系列模型试验,对透空水平板下波浪总上托力进行了研究,结果表明:平板下最大总上托力并不与最大冲击压强同步发生。为此,依据试验结果对波浪总上托力产生机理和影响因素进行详细分析,提出透空水平板波浪最大总上托力的计算公式,试验结果表明,该公式与实验值有着较好的一致性。  相似文献   

18.
In this paper, the computational lower bound (LB) limit analysis using finite element with second-order cone programming was used to investigate the LB solutions of the undrained bearing capacity of continuous footing with a linear increase in the strength profile and an adhesion factor at the soil–footing interface. A full range of parametric studies of the dimensionless strength gradients and adhesion factors at the soil–footing interface were performed in the LB calculations. The results were verified by comparison with the available solution from the method of characteristics (slip-line analysis) for perfectly smooth and rough footings. The LB analyses were able to complete a prior solution of undrained bearing capacity with a linear increase in the strength profile by incorporating the influence of adhesion factor at the soil–footing interface. Based on the nonlinear regression to the computed LB solutions, an approximate expression of the LB solution regression was proposed, which is applicable to an accurate prediction of a safe load for offshore shallow foundations in clay with an arbitrary linear increase in strength and adhesion factor at soil–foundation interface in practice.  相似文献   

19.
Abstract

This paper presents the results of a series of model tests performed to study the shaft capacity of pre-bored grouted planted nodular (PGPN) pile in dense sand. The influence of the vertical overburden pressure on the shaft capacity of the PGPN pile is also investigated based on the test results. The test piles were equipped with strain gauges to measure the axial loads during the loading process, moreover, a foam plate was buried beneath pile tip to eliminate the influence of tip resistance on the shaft capacity. Some conclusions can be drawn based on the test results: the peak skin friction of PGPN pile increases with the increase of vertical overburden pressure applied on the foundation soil, while the rate of increase decreases with the increasing overburden pressure; the surface of the pile–soil interface of PGPN pile is relatively rough, and significant dilatant increase in lateral stress occurs during the loading process.  相似文献   

20.
透空式水平板波浪上托力分布   总被引:9,自引:3,他引:9  
通过系列模型试验,对波浪上托力沿板宽分布进行了详细分析,提出对于透空式平板结构,发生较大冲击压强或上托力的分布主要分为均布型和局部冲击型两类,由此得到压强分布的计算公式。大量试验资料表明,该公式与实验值有着较好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号