首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
In order to accurately design a sand compaction pile (SCP) with low replacement area ratio, it is important to understand the mechanical interaction between the sand pile and clay ground and its mechanism during consolidation process in composite ground. In this article, therefore, a series of numerical analyses on composite ground improved by SCP with low replacement area ratio were carried out. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, were confirmed by comparing the results obtained from a series of laboratory model tests with the composite ground improved by SCP. Through the results of the numerical analyses, mechanical behavior of the sand pile and clay in composite ground during consolidation is elucidated, together with a stress sharing mechanism between sand pile and clay.  相似文献   

2.
In order to accurately design a sand compaction pile (SCP) with low replacement area ratio, it is important to understand the mechanical interaction between the sand pile and clay ground and its mechanism during consolidation process in composite ground. In this article, therefore, a series of numerical analyses on composite ground improved by SCP with low replacement area ratio were carried out. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, were confirmed by comparing the results obtained from a series of laboratory model tests with the composite ground improved by SCP. Through the results of the numerical analyses, mechanical behavior of the sand pile and clay in composite ground during consolidation is elucidated, together with a stress sharing mechanism between sand pile and clay.  相似文献   

3.
In this paper, a case study was performed on a sand compaction pile (SCP) and a gravel compaction pile (GCP) to estimate the dynamic characteristics and the improvement effect of soft ground. The dynamic elastic modulus, shear modulus, bulk modulus, and Poisson's ratio were estimated and the dynamic characteristics were analyzed using the compression and shear wave velocity of the improved ground based on the results of suspension P- and S-wave (PS) logging. The results revealed that the dynamic properties were increased in the order of unimproved subsoil and improved subsoil using SCP and GCP. The increase in the effects of dynamic properties with each replacement ratio of SCP was not large, whereas a good increase in the effects was observed in the case of the improved subsoil with GCP. Consequently, it was presented that the resistance characteristics against the seismic loading of GCP are excellent. As a result of analyzing the density distribution of the improved subsoil through density field logging, the overall density distribution gradually exhibits increasing trends in the order of unimproved subsoil and improved subsoil with SCP and GCP. Thus, the improvement effect of GCP was relatively high in comparison with the same replacement ratio of SCP.  相似文献   

4.
浅谈挤密碎石桩的施工方法   总被引:1,自引:0,他引:1  
唐建忠 《海岸工程》2004,23(3):68-71
挤密碎石桩施工法是一种振动成桩法,即先用桩管振动成孔,然后填入足够数量的碎石,最后振动密实成桩体。通过振动、挤密的成桩过程,将原地基土振动夯实,桩体与桩间土形成复合地基,达到既处理可液化地基又增强地基的效果。介绍了挤密碎石柱的施工方法和质量检测方法。  相似文献   

5.
Current floating structures require more reliable and higher anchoring capacities because of their increased size. A suction anchor is one of the most popular anchors for a floating system. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was subjected to mainly a horizontal load. Three-dimensional finite element numerical analyses were carried out using ABAQUS, and three centrifuge tests were performed to calibrate the numerical analyses. A parametric study with different dimensions and loading points for the suction anchor was conducted. The horizontal capacity of the suction anchor was estimated, and the soil reaction distribution was analyzed when the load was applied at the optimal point. Based on the results, an analytical equation for calculating the horizontal capacity of a suction anchor was proposed that can be easily adopted for design.  相似文献   

6.
为了探索不同径厚比海底管道的压溃屈曲特性,本文分别采用挪威船级社(Det Norske Veritas,DNV)规范、有限元模拟和深海压力舱模型试验,研究不同径厚比海底管道承载外部水压的能力,并就DNV规范压溃屈曲计算公式对不同径厚比管道的适用性进行了讨论,优化了小径厚比海底管道压溃屈曲的设计方法。研究表明:小径厚比管道的压溃屈曲临界压力对管道径厚比的变化更敏感;DNV规范计算小径厚比管道的压溃屈曲临界压力偏小,在进行深海管道的压溃屈曲设计时,建议采用模型试验结合有限元模拟的方法,计算管道实际可提供的压溃屈曲承载力。  相似文献   

7.
In this study, loss with time of dredged sea sand in a tidal embankment subject to sea level variation was examined through the centrifugal model test. The experimental results demonstrate that a differential subsidence occurs on the surface of the dredged-sea-sand fill and that the largest subsidence was observed just above the damaged portion of the geosynthetic mat. In addition, image analysis provided the largest displacement vector at the damaged portion of the geosynthetic mat, the shear-strain localization from the damaged portion of the geosynthetic mat through the center of the slope surface, and the crest of the dredge-sea sand fill. These displacement vectors and shear strains occurred early in the experiment and increased over time. Therefore, the loss of dredged sea sand can occur rapidly with damage to the geosynthetic mat and can possibly induce differential subsidence and cracks at the surface of the dredged-sea sand fill.  相似文献   

8.
利用modeling of models的方法研究端承型桩承载力离心模型试验中的粒径效应。在模拟同一原型时,不同桩径的模型桩,桩身压缩性及桩长均不同,导致侧摩阻力发挥机理及程度不同,本文分别探讨了桩端阻力,侧摩阻力及承载力(桩顶荷载)的粒径效应对承载机理和承载特性的影响。结果表明,桩端阻力的粒径效应作用规律与浅基础一致,可以借用浅基础的粒径效应定量评价方法评价端承桩承载力离心模型试验中的粒径效应。侧摩阻力的粒径效应比桩端阻力的粒径效应显著。由于侧摩阻力的影响,相同条件下承载力的粒径效应比桩端阻力有所增强。对于极限桩端阻力和极限承载力,粒径效应均随长径比的增加而减弱。  相似文献   

9.
Abstract

An elastoplastic, dynamic, finite-difference method was applied to study the effects of nonlinear seismic soil–pile interaction on the liquefaction potential of marine sand with piles. The developed model was well validated using the centrifuge test. The results showed that acceleration, bending moment, and excess pore water pressure complied well with centrifuge test results. The effect of different affecting parameters on liquefaction potential was investigated using parametric study. Using a sensitivity analysis, the pile embedment parameter was shown to be the most influential parameter. Finally, applying the evolutionary polynomial regression technique, a new model for predicting the liquefaction potential was presented.  相似文献   

10.
利用有限元软件ABAQUS建立T型圆钢管节点热传导分析模型,通过与已有试验数据进行对比,验证了所建有限元模型的可靠性。利用提出的有限元模型分析了不同主管轴力作用下的T型圆钢管节点在火灾环境中的失效过程,研究了主管轴力对T型圆钢管节点临界温度的影响规律。分别讨论了采用屈服强度折减和弹性模量折减的方法预测T型圆钢管节点在高温下的极限承载力,并将预测结果和有限元分析结果进行了对比,给出了这两种方法用于工程设计时的建议。  相似文献   

11.
正压冲固平台是一种采用短桩加固基础的新型海洋采油平台,对于这种新型的平台结构,在结构分析和构件强度校核中必须考虑其有限元模型的基础边界条件处理问题。本文提出了正压冲固平台有限元计算模型中基础边界条件的一种简化方法,将两个水平方向的扭转自由度简化为扭转弹簧边界元,其余自由度简化为固定约束。通过计算分析得到了不同的边界约束刚度系数的取值对平台总体位移和强度校核应力的影响及变化趋势。结论是,平台结构对约束刚度系数K的反应在10^4~10^4之间时比较明显,对K的敏感度最为强烈:在此范围之外,平台反应分别接近于简支约束情况和刚性约束情况。尤其对于接近约束边界的单元,其应力变化最敏感。  相似文献   

12.
重力锚锚固是一种常见的锚固形式。为了能够提供足够的水平承载力,传统型式的重力锚普遍比较笨重,在上拔回收时会产生较大的竖向吸附力,不利于重复利用。针对此问题,设计了一种新型铰接式重力锚,并阐述了其铺设与回收方案。其次采用有限元方法对其整体强度进行了校核,结果均符合规范。最后基于模型试验,对铰接式重力锚在黏土中的运动过程进行了研究,进而确定了其在黏土中的水平承载力和回收时的上拔力。结果表明:相较于传统重力锚,新型铰接式重力锚在确保水平承载性能的基础上,能够大幅减小上拔力,从而有效地降低铺设和回收作业的难度,且可适应多种海底土质,但该锚型仅适用于悬链线式系泊系统。相关研究结果可为实际工程中铰接式重力锚的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号