共查询到2条相似文献,搜索用时 0 毫秒
1.
某港口堆场地基上部5.0m系吹填而成,地表下18m范围均属软土,经真空预压初级加固后地基承载力仅在80—90kPa,局部区域上部淤泥土层土性指标较差,含水量大于50%,地基承载力不足60kPa。为了使地基达到230kPa的承载要求,设计采用深层搅拌法加固超软弱地基。通过现场成桩工艺试验和检测表明,桩身水泥土强度在90d龄期时大于1.80MPa,单桩承载力标准值大于150kN,以φ600桩径、桩长13.5m、置换率为0.308和φ500桩径、桩长13.5m、置换率为0.267两种方案布置的复合地基承载力标准值均超过了230kPa的设计要求。试验结果表明,深层搅拌法在港口超软弱地基土应用只要施工工艺适当,完全可以使地基承载力提高2—3.5倍以土,从而节省大量的工程投资。 相似文献
2.
Deep cement mixing (DCM) technique is a deep in-situ stabilization technique by mixing cement powder or slurry with soft soils below the ground surface to improve their properties and behavior. Some of DCM treated soft soil grounds are approximately in a plane-strain condition; for example, a fill embankment on DCM improved ground. In this study, a plane-strain physical model was created with instrumentation and used to investigate the bearing capacity and failure mode of a soft soil improved by an end-bearing DCM column group. This study focuses on the observed wedge-shaped shear failure of the model ground and attempts to give an account of the failure. Two different methods are used to calculate the bearing capacity of the model ground, and the computed values are compared with the measured ones. It is found that the simple Brom's method gives a better estimate of the bearing capacity of the present model ground. It is also found that measured data of pore water pressures at different locations in the soft soil indicate coupling between failure of columns and consolidation of the soft soil. This study has presented the first time that a wedge-shaped block failure was observed for pattern of DCM treated soil ground. 相似文献