首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abundance of baroduric bacteria from nine sediment cores (0–10 cm below sea floor) was examined for their response to simulated benthic disturbance in the Central Indian basin (CIB). While the total counts of bacteria decreased from 109 to 106 g?1 dry wt sediment, the average retrievable counts (CFU-colony forming units) improved by two orders of magnitude, i.e., from 102 104 g?1 dry wt sediment. The baroduric retrievable forms were dominated by Acinetobacter and Moraxella sp before the disturbance. After the disturbance the generic diversity was represented by Staphylococcus sp, Enterobacter sp, Micrococcus sp, Coryneforms sp, and Pseudomonas sp in addition to Acinetobacter. These observations were corroborated by changes in enzymatic activities of the retrievable bacteria, which could lead to changes in the biochemical characteristics of the sediment. Thus the simulated disturbance brought about an increase in culturable abundance, taxonomic and functional diversity of deep-sea sediment of the CIB.  相似文献   

2.
In order to study temporal variations of the genetic material in the continental shelf and deep-sea sediments of the extremely oligotrophic Cretan Sea, samples were collected on seasonal basis from August 1994 to September 1995, with a multiple corer, at seven stations (from 40 to 1540 m depth). Surface sediments (0–1 cm) were sub-sampled and analyzed for nucleic acid content (DNA, RNA) and bacterial density. DNA concentrations in the sediments were high (on annual average, 25.0 μg g-1) and declined with increasing water depth, ranging from 3.5 to 55.2 μg g-1. DNA concentrations displayed wide temporal changes also at bathyal depths confirming the recent view of the large variability of the deep-sea environments. Also RNA concentrations decreased with increasing water depth (range: 0.4–29.9 μg g-1). The ratio of RNA to DNA did not show a clear spatial pattern but was characterized by significant changes between sampling periods. DNA concentrations were significantly correlated with protein and phytopigment concentrations in the sediment, indicating a possible relationship with the inputs of primary organic matter from the photic layer. Bacterial densities were generally high (range: 0.9–4.6×108 cells g-1) compared to other deep-sea environments and decreased with increasing water depth. Estimates of the bacterial contribution to the sedimentary genetic material indicated that bacterial-DNA accounted, on annual average, for a small fraction of the total DNA pool (4.3%) but that bacterial-RNA represented a significant fraction of the total sedimentary RNA (26%). Bacterial contribution to nucleic acids increased, even though irregularly, with increasing depth. In deep-sea sediments, changes in RNA concentrations appear to be largely dependent upon bacterial dynamics. Estimates of the overall living contribution to the DNA pools (i.e. microbial plus meiofaunal DNA) indicated that the large majority (about 90%) of the DNA in continental and deep-sea sediments of the eastern Mediterranean was detrital. The non-living DNA pools reach extremely high concentrations up to 0.41 g DNA m-2 cm-1. Thus, especially in deep benthic habitats, characterized by low inputs of labile organic compounds, detrital DNA could represent a suitable and high quality food source or a significant reservoir of nucleic acid precursors for benthic metabolism.  相似文献   

3.
ABSTRACT

Macrofaunal communities of the Central Indian Basin (CIB) were sampled with a spade before (June 1997), and immediately after (August 1997), and 44 months (April 2001) after a simulated benthic disturbance for polymetallic nodule mining. The average density recorded down to a sediment depth of 40 cm ranged from 89 to 799 ind·m?2 (mean: 373 ± 221 SD; n = 12) and 178–1066 ind·m?2 (mean: 507 ± 489 SD; n = 3) in the test and reference area, respectively. Most of the macrobenthic animals (64%) were concentrated in the upper 0 to 2 cm sediment layers, whereas, sizeable fauna (6%) inhabited the 20–40 cm sediment section and the deepest 5 cm section from 35–40 cm contributed only about 2% to the total population density. The fauna, comprised of 12 groups, were dominated by the nematodes, which constituted 54% of the total population. The macrofaunal density in the test site showed a significant increase (x:400 ind·m?2) in the 44 months postdisturbance sampling (x:320 ind·m?2). The population of nematodes and oligochaetes was nearly restored after 44 months, but the polychaetes and crustaceans did not reach the baseline populations measured in June 1997. The top 0–2 cm sediment layer was severely affected by the disturber, and the study suggests that physically disturbed deep-sea macrofauna may require a longer period for restoration and resettlement than normally believed.  相似文献   

4.
Shark Bay, Western Australia is a large, shallow, hypersaline coastal lagoon with low nutrient input. Dissolved inorganic P in the water column decreased from 0·2 μm in the oceanic region of the bay to undetectable limits in the hypersaline areas of the bay. Organic C, total N, and total P were measured in the sediments along the salinity gradient. The sediment organic C was 1–3 mmol C g−1 and increased into the bay; total N was positively correlated with C; but P decreased from 15 μmol P g−1 in the outer bay to less than 1 μmol P g−1 in the hypersaline region. Sediment inorganic P comprised 80–90% of the total sediment P. The molar C:P ratio of the sediment organic phase increased from 1700 in the outer bay to 12 000 in the hypersaline region. Organic C and total P were also measured in the benthic plants. P content of the plants also decreased as salinity increased, resulting in an increase in the plant C:P ratio which was similar to the increase in the C:P ratio of the sediment organic phase. P composition of the coastal sediments can change dramatically in a relatively short distance as a result of net uptake and sedimentation by benthic communities.  相似文献   

5.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   

6.
The changes in the plankton biomass structure in relation to nutrient inputs were studied in the Gulf of Venice (Northern Adriatic Sea), an area characterized by a very marked trophic state variability. The investigation was carried out at two stations, in March, May and July 2005 and 2006, considering the whole water column. The size structure (from picoplankton to mesozooplankton) of both autotrophs and heterotrophs was analysed. Signals of diluted waters and nutrient inputs were more marked in 2005 than in 2006. In 2005, the total plankton biomass was almost double (87 ± 37 μg·C·l?1) that in 2006 (44 ± 26 μg·C·l?1). The variations were determined mainly by phytoplankton, with a 70% decrease, and a shift from a community dominated by microphytoplankton (49 ± 12%) in 2005 to one dominated by bacteria (43 ± 11%) in 2006 was observed. The relationship between the heterotrophic (H) and autotrophic (A) biomass indicated a rapid decline of the H/A ratio with increasing phytoplankton biomass. This study, although temporally limited, is consistent with the results reported for other marine environments and it seems to confirm the importance of nutrient inputs in structuring the biomass of plankton community.  相似文献   

7.
Abstract

Phosphorus and nitrogen were measured in stream run‐off from the four catchments of the Taita Experimental Basin (41° 11′ S, 174° 58′ E). The land is used as exotic conifer forest, native forest, and hill pasture. Multiple regression analysis was used to estimate chemical losses per unit area in floods and at low flows.

At low flows, the hill pasture (fertilised with lime at 630 kg·ba?1·y?1, and superphosphate at 380 kg·ha?1·y?1) tended to lose more phosphorus and nitrate than the forested land, but differences were small, and not always significant. During large floods, the hill pasture (No. 5 Catchment) lost about 3 times as much reactive phosphate and 2–5 times as much total phosphorus as the forested land, and 130–190 times as much nitrate as land in the Exotic Forest and Native Forest 2 Catchments. Nitrate losses from land in the No. 4 Catchment (mainly native forest) were as high as those from the hill pasture, so high nitrate loss is not associated solely with agriculture.

Losses of total phosphorus via the catchment streams were estimated as: No. 5 Catchment (hill pasture), 293 g·ha?1·y?1; Native Forest 2 Catchment, 201 g·ha?1·y?1; No. 4 Catchment, 124 g·ha?1·y?1; Exotic Forest Catchment, 71 g·ha?1.y?1. Nitrate‐N losses were estimated to have been 1356 g·ha?1·y?1, 11.5 g·ha?1·y?1, 1436 g·ha?1·y?1, and 44 g·ha?1·y?1 respectively. Phosphorus and nitrate concentrations were similar in the Exotic Forest and Native Forest 2 streams, but the Exotic Forest tended to lose smaller amounts because it yielded about 50% less water per unit area.

Over the 2‐y study, an estimated 47–70% of phosphorus losses and up to 83% nitrate losses occurred in large floods; 31% and 48% respectively were apparently lost from the hill pasture catchment in a single flood. Less than 20% of estimated phosphorus losses and as little as 1% of nitrate losses occurred at low flows.

Run‐off of phosphorus and nitrate was spasmodic, and this should be considered in assessing the impact of surface run‐off on the biology and chemistry of receiving waters.  相似文献   

8.
Benthic disturbance due to future deep-sea polymetallic nodule mining would involve expensive sediment plume generation and resedimentation on the sea floor. In order to evaluate the effects of resedimentation on benthic environment, the Indian Deep-sea Environment Experiment (INDEX) was conducted in 1997, and pre-, and post-disturbance studies on grain size were carried out. The initial increase in clay content after the experiment, continued to increase further as measured in the first monitoring phase samples, 44 months later. Increase in clay-sized particles during monitoring-l (M-l) was highest within the simulated (disturbed) zone and to the north of it, which is attributed to the combined effects of disaggregation, abrasion, and powderization of sediments during transportation. Due to this fractionation (breaking up), the particles appear to have remained in suspension over a prolonged period of time after they were discharged in the water column 5 m above the seabed during INDEX. The travel effects of INDEX plume appears to be localized and confined within and around the disturbed zone (DZ) as resettlement of fine particles from the benthic plume was traced up to 2 km south and 12 to 18 km north of the DZ. The evidence does not suggest the existence of strong currents and benthic storms in the CIB  相似文献   

9.
Megafauna biomass and feeding guilds were studied on the NW Iberian upwelling Continental Margin in order to determine the presence of enriched zones pointing to enhanced particle input. We compare these findings with similar data obtained from a transect across the Celtic Continental Margin that represents a regime without coastal upwelling. Additionally sediment concentrations of phytopigments (chlorophyll-a, phaeophorbides) representing recent inputs of algal production and of nucleic acids (DNA, RNA) are used as proxies for microbial biomass, to assess if there was a relation between these parameters and the megafauna distribution. The sediment on the upper slope (<1600 m) of the Iberian Margin was found to be inhabited by filter-feeding megafauna (26–73% of total invertebrate density, and 1–35% of biomass), and contained relatively low levels of phytopigments (3–6 ng/cm3 chlorophyll-a) and nucleic acids (12–16 μg−1 DNA, 1.5–3.5 μg−1 RNA). In contrast, on the upper slope of the Celtic Margin the dominant component of the megafauna were deposit-feeders (57–92% of total invertebrate density, and 23–90% of biomass) and the sediments contained higher concentrations of phytopigments and nucleic acid. These observations, supplemented by video records revealing the presence of current ripples on the Iberian upper slope, show that these upper slope regions are non-depositional, high energy environments. Conditions at the lower slope and the abyssal plain on the Iberian transect were more quiescent with large deposit-feeding holothurians dominating the megafauna (72–94% of invertebrate biomass), and with relatively high sediment concentrations of phytopigments (7–9 ng/cm3 chlorophyll-a, 157–170 ng/cm3 phaeophorbides) and nucleic acids (21–38 μg−1 DNA, 2.4–5.5 μg−1 RNA). On the basis of our data we argue that the benthic food for the deepest stations on the Iberian transect does not consist of shelf derived organic matter. More likely, fast sinking offshore blooms, possibly associated with filaments of upwelling water, form the major contribution to the annual food supply of the deep living megafauna.  相似文献   

10.
Anaerobic salt marsh sediments were amended with a variety of organic pollutants and the effects on methanogenesis, sulfate reduction and carbon dioxide evolution were examined. Addition of 1000 μg g?1 (dry weight sediment) Arochlor 1221, lindane, endrin, benzene and phenanthrene resulted in no significant effects on the activities studied. Methanogenesis was inhibited by 1000 μg g?1toxaphene, PCP, chlordane, naphthalene, DDT, Kepone and heptachlor and by 100 μg g?1 PCP and toxaphene. At 1000 μg g?1 naphthalene and toxaphene and 100 μg g?1 PCP, a period of initial inhibition of methanogenesis was followed by stimulation relative to controls. Arochlor 1254 (1000 μg g?1) and Temik (500 and 10 μg g?1) stimulated methanogenesis from the outset. Temik at 500 μg g?1 gave the greatest stimulation of methanogenesis (900% of controls) of any of the compounds studied. Sulfate reduction was inhibited by 1000 μg g?1 PCP, toxaphene, naphthalene and chlordane and by 500 μg g?1 atrazine and 100 μg g?1 heptachlor. Sustained inhibition of sulfate reduction by naphthalene, toxaphene and PCP may have contributed to the stimulation of methanogenesis. Carbon dioxide evolution was not significantly affected by most of the compounds studied except for 100 μg g?1 PCP and 1000 μg g?1 aphthalene, each of which gave significant inhibition in only one of three experiments.Concentrations of individual organic pollutants required to cause observable effects were high. It is concluded that, except for highly polluted sediments, methanogenesis, sulfate reduction and CO2 evolution would not be affected by the compounds studied here at concentrations typically found in the environment.  相似文献   

11.
We conducted a study that shows that light and dark conditions do not affect the uptake rates of ammonium and nitrate by the seagrass Zostera noltei. This is an important advantage over some seaweed species in which these rates are severely reduced at night. In the light, the ammonium uptake rates were initially higher (15 and 20 μmol·g?1·h?1) and stabilized at a rate of 5 μmol·g?1·h?1 after 1 h, whereas in the dark the rates remained constant at a rate of 10 μmol·g?1·h?1 over the first 180 min of incubation. The rates of nitrate uptake in the light were high within the first 120 min of incubation (7.2–11.1 μmol·g?1·h?1) and decreased afterwards to lower values (0.8–3.9 μmol·g?1·h?1), whereas in the dark the rates fluctuated around 0.0–11.1 μmol·g?1·h?1 throughout the whole incubation time (7 h). The soluble sugar content of Z. noltei leaves increased significantly with both ammonium and nitrate incubations in the light, indicating the metabolic outcome of photosynthesis. In the dark, there was no significant variation in either the soluble sugar or in the starch content of leaves, rhizomes or roots in either the ammonium or nitrate incubations. However, the total starch content of plants decreased at night whereas the total soluble sugars increased, suggesting a process of starch catabolism to generate energy with the consequent production of smaller monosaccharide products. The starch content of rhizomes decreased significantly during the light incubations with nitrate but not with ammonium. These results suggest that carbohydrate mobilization is necessary for Z. noltei to account for extra energetic costs needed for the uptake and assimilation of nitrate. Furthermore, our results suggest that nitrate uptake, at least during the day, requires the mobilization of starch whereas the uptake of ammonium does not.  相似文献   

12.
Microalgal production (ungrazed rock) and standing stock (grazed) were measured over a period of 15 months in the lower, middle and upper balanoid zones of two rocky snores in the Transkei region of southern Africa. The mean monthly production of chlorophyll a, which ranged from 0,3 to 2,0 μg·cm?2. was inversely correlated with tidal elevation. Highest rates of production (3,5–6,0 μg·cm?2) were recorded in winter at all tidal levels. The amplitude of seasonal fluctuations decreased with tidal height. At the middle and upper levels standing stock usually exceeded monthly production, whereas the opposite often occurred in the lower balanoid. No temporal or spatial trends in standing stock were evident. The intertidal distribution of grazing gastropods (excluding littorinids) correlated positively with primary production but showed no relationship with standing stock. No clear seasonal trends in grazer abundance were evident. The fact that standing stock exceeds monthly production suggests that grazing pressure is insufficient to balance primary production in the middle and upper balanoid zones on these shores. Grazers do, however, remove most of the primary production in the lower balanoid zone. Possible mechanisms underlying the observed patterns are discussed.  相似文献   

13.
The crab Carcinus maenas (L.) and the barnacle Elminius modestus Darwin were exposed to a range of dissolved concentrations of Zn, Cu and Cd for 21 days in artificial seawater. Accumulation of Zn and Cu by crabs has been interpreted in terms of the presence of a regulation mechanism to maintain constant body concentrations (83·2 ± 19·4 μg Zn g?1 dry wt.; 39·8 ± 9·8 μg Cu g?1 dry wt.) under varying external dissolved metal levels, until a threshold dissolved metal concentration (c. 400 μg Zn l?1; c. 170 μg Cu l?1) beyond which net accumulation of metal begins. Cadium appears to be accumulated by C. maenas at all exposures with no evidence for regulation of body cadmium concentrations. Exposure of E. modestus to Zn, Cu or Cd caused net accumulation of the respective metal in the bodies of the barnacles, with no evidence for regulation of body metal concentrations.  相似文献   

14.
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 × 108 cells g−1 equivalent to 8.7 and 38.7 μgC g−1) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.  相似文献   

15.
Particulate nitrogen (PN) and chlorophyll a (Chla) were measured in the northern reach of San Francisco Bay throughout 1980. The PN values were calculated as the differences between unfiltered and filtered (0·4 μm) samples analyzed using the UV-catalyzed peroxide digestion method. The Chla values were measured spectrophotometrically, with corrections made for phaeopigments. The plot of all PNChla data was found to be non-linear, and the concentration of suspended particulate matter (SPM) was found to be the best selector for linear subsets of the data. The best-fit slopes of PNChla plots, as determined by linear regression (model II), were interpreted to be the N: Chla ratios of phytoplankton. The Y-intercepts of the regression lines were considered to represent easily-oxidizable detrital nitrogen (EDN). In clear water ( < 10 mg l?1 SPM), the N: Chla ratio was 1·07 μg-at N per μg Chla. It decreased to 0·60 in the 10–18 mg l?1 range and averaged 0·31 in the remaining four ranges (18–35, 35–65, 65–155, and 155–470 mg l?1). The EDN values were less than 1 μg-at N l?1 in the clear water and increased monotonically to almost 12 μg-at N l?1 in the highest SPM range. The N: Chla ratios for the four highest SPM ranges agree well with data for phytoplankton in light-limited cultures. In these ranges, phytoplankton-N averaged only 20% of the PN, while EDN averaged 39% and refractory-N 41%.  相似文献   

16.
Concentrations of mercury were determined for the waters, suspended matter and sediments of the Tagus and of major French estuaries.The Tagus estuary is one of the most contaminated by mercury derived from the outfalls of a chloralkali plant and from other industrial sources. In deposited sediments the median level, 1·0 μg Hg g?1, is twenty times higher than the natural background and Hg contents depend on the sediment grain-size, age and the distance from waste-outfalls. Suspended matter is more regularly and highly contaminated (median value: 4·5 μg Hg g?1). In the French estuaries Hg levels in the suspended material decrease with salinity due to dilution and/or remobilization processes. In June 1982, in the Loire estuary, high values of Hg are observed in the middle estuary and attributed to urban and industrial sources.In the Tagus estuary, the general distribution of total dissolved Hg confirms the contamination: it increases seaward from 10 ng 1?1 in the river to 80 ng 1?1 in the estuary outlet. The dissolved Hg is almost totally organic in the river, inorganic in the middle estuary due to inorganic Hg effluents and again organic in the lower estuary. This variation is related to the dissolved organic carbon values. The dissolved Hg levels in the Loire Estuary (5–300 ng 1?1) are much higher than in the Gironde estuary (3–6 ng 1?1) and of the same order as those observed in the Tagus estuary.  相似文献   

17.
Bacterial abundance was studied from April to December 1979 in the sediments of a Bay of Fundy mudflat. Bacterial biomass ranged from 1·6 to 2·8 g C m−2 in the top 5 cm and bacterial numbers normalized for the amount of organic carbon in the sediment were about 9 × 1011 g−1 C at the surface during most of the year. However, when a bloom of pennate diatoms occurred in the fall, bacterial numbers per gram carbon doubled. There was a correlation of r=0·83 between bacteria g−1 C and chlorophyll a for all sampling dates at the high intertidal station. Sieved size fractions of surface sediment taken during a period of low micro-algal biomass and just after the micro-algal bloom showed a strong correlation (r=0·92) between the increases in bacterial and algal abundance for the fractions > 20 μm. We suggest that the apparent relation between benthic micro-algal and bacterial abundance on both a seasonal and within-sediment basis may be due to the release of extracellular material by the micro-algae.  相似文献   

18.
《Oceanologica Acta》1998,21(2):325-333
The arsenic (As) cycle in the marine environment is known to be sensitive to biological activity. Within the scope of the National Coastal Oceanography Program, we undertook a specific study of the behaviour of this element in a water column on the continental shelf of the Bay of Biscay off the Gironde estuary during two oceanographic cruises conducted in May 1994 and May 1995. Various chemical forms were measured: arsenate (As3), arsenate (As5), monomethylarsenic (MMA), dimethylarsenic (DMA) and dissolved total As after ultraviolet mineralization. The net flux of total As from the Gironde estuary was evaluated as well as its effect on the concentration in surface marine waters. The vertical profiles in the coastal zone during a period of active primary production confirmed a certain analogy between arsenates and phosphates as well as the formation of As3 and DMA. The importance of organoarsenic species not directly accessible to the formation of volatile hydrides is demonstrated. Their presence modifies assessments, reducing the deficit of dissolved total As in the euphotic layer to just 5%. For particles, the As content in phytoplankton was estimated at 6 μg·g−1 compared to 20 to 30 μg·g−1 in iron- and aluminium-rich terrigenous particles. These results do not invalidate the role of phytoplankton in the speciation of dissolved As but indicate that their involvement in vertical transfers was apparently not predominant in the zone under study.  相似文献   

19.
Chemical extraction techniques show that the majority of the arsenic in North Atlantic deep-sea sediments is associated with an iron phase compositionally similar to that found in deep-sea ferromanganese nodules (As/Fe ~ 11 · 10?4) and is probably of seawater origin. Some sediments also contain As associated with Fe oxides produced by continental weathering. A minority (~8%) of the arsenic is of detrital origin but is not associated with Fe or Mn oxides; it has a content (1.7 ppm) similar to the average crustal abundance. In the Eastern Mediterranean Sea, near-shore sediments contain As associated with land-derived Fe oxides (As/Fe ~ 2 · 10?4), but As/Fe ratios increase to ~ 13 · 10?4 in deep-sea sediments as the contribution of seawater derived arsenic becomes dominant. Arsenic is enriched in metalliferous sediments (As/Fe ~ 20?50 · 10?4) but As/P ratios of metalliferous sediments, deep-sea ferromanganese nodules and deep-ocean water are all similar. Although a hydrothermal contribution cannot be discounted, it is likely that the arsenic is also of seawater origin, suggesting that hydrothermal iron oxyhydroxides remove As more efficiently from seawater than do iron phases (goethite) in deep-sea sediments and nodules. Arsenic accumulates in deep-sea sediments (~ 6 μg cm?2 10?3 yr?1) at sediments (~ 120 μg cm?2 10?3 yr?1) at rate sufficient to balance river input input (~3 · 1010 g yr?1). These estimates give an oceanic residence time for arsenic of 1–2 · 105 yr.  相似文献   

20.
泥蚶、缢蛏和僧帽牡蛎呼吸与排泄的周年变化   总被引:1,自引:1,他引:0  
于2005年5月至2006年3月对浙江沿岸重要的3种经济贝类泥蚶、缢蛏和僧帽牡蛎的呼吸率与排泄率进行了周年研究。结果表明:泥蚶、缢蛏和僧帽牡蛎耗氧率的变化范围分别为0.11~5.05 mg/(g·h)、0.77~5.97 mg/(g·h)和0.33~5.47 mg/(g·h),排氨率的变化范围分别为21.51~1 078.63 μg/(g·h),26.97~990.73 μg/(g·h)和32.12~1 378.67 μg/(g·h);耗氧率与排氨率9月份最高,1月份最低。经单因素方差分析发现,3种实验贝类月际间的耗氧率与排氨率均存在极显著差异(p<0.01),经配对T检验发现,缢蛏(SC)和僧帽牡蛎(SCA)之间的耗氧率存在着显著差异TSC-SCA=3.184,p=0.024),泥蚶(TG)与缢蛏、僧帽牡蛎的耗氧率之间都不存在差异(TTG-SC=1.887,p=0.118;TTG-SCA=0.246,p=0.815),泥蚶、缢蛏和僧帽牡蛎之间的排氨率的差异均不显著(TTG-SC=0.977,p=0.373;TTG-SCA=2.369,p=0.064;TSC-SCA=1.002,p=0.362)。3种贝类的耗氧率与排氨率均随温度的升高而升高,经回归分析发现,耗氧率和排氨率与温度的变化均呈较显著的幂指数性相关lnY=lna+blnTY=aebT)。泥蚶呼吸排泄O:N变化范围为4.69~28.55,缢蛏和僧帽牡蛎的O:N变化范围分别为:4.68~37.89和3.04~10.27。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号