首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

A pore‐water pressure probe (piezometer) was implanted in Mississippi delta sediments at a preselected site (Block 28, South Pass area, 29°00´N, 89°15´W) 145 m from an offshore production platform (water depth approx. 19 m) in September 1975. Total pore‐water pressures (uw ) were monitored for extended periods of time at depths of approximately 15 and 8 m below the mudline concurrently with hydrostatic pressures (u8 ) measured at depths of 15 m and approximately 1 m below the mudline. Relatively high excess pore‐water pressures, ue = (uw ‐u8 ), were recorded at the time of probe insertion measuring 99 kPa (14.4 psi) at 15 m and 50 kPa (7.3 psi) at 8 m. Six hours after the probe was implanted, excess pore pressures were still high at 81 kPa (11.8 psi, 15 m) and 37 kPa (5.4 psi, 8 m). Pore pressures appeared to become relatively constant at the 8‐m depth after 7 h had elapsed, and at the 15 m depth after 10–12 h. Excess pore‐water pressures averaged 72 kPa (10.4 psi, 15 m) and 32 kPa (4.6 psi, 8 m) prior to the initial effects of Hurricane Eloise, which passed in close proximity to the probe site. Significant variations in pressures were recorded during storm activity. As the effects of the storm subsided, excess pore‐water pressures began to decline slightly at the 15‐m depth; however, concurrently at the 8‐m depth, pore pressures began to increase gradually. During the period of 21–25 days after the probe was implanted, excess pore pressures appeared to become more constant, averaging 24 kPa (3.5 psi) at 15 m and 43 kPa (6.2 psi) at the 8‐m depth. The presence of methane, a common occurrence in these delta muds, may have influenced, or contributed to, the total pore‐water pressures measured during this experiment.  相似文献   

2.
Abstract

A differential piezometer was used to monitor excess pore pressure in the soft clayey seafloor sediments of Block 28, South Pass, Mississippi delta, from September 1975 to March 1976. An ambient excess pore pressure of about 32 kPa was measured at a depth of 6.4 m below the mudline in a water depth of 19 m. Storm‐wave‐generated cyclic fluctuations of ± 4 kPa about the ambient were measured during Hurricane Eloise. Irregular, long‐period, small‐amplitude fluctuations in excess pore pressures persisted for 4 days following the storm. An effective stress analysis was made by using excess pore pressures; in situ field vane‐shear strength, t fv, measurements; and laboratory wet unit weights measured by Lehigh and NOAA. The effective stress of the SEA‐SWAB site soil was calculated to be zero to a depth of about 6 m, below which it increased to 3.5 kPa at a depth of 15 m. Values of c´ = 4.6 kPa, = 56°, and T FVvo(c/p) =0.1–0.2 were calculated, and it was concluded that these data do not represent the in situ condition of the soil because of the probability that the measured soil properties were affected by the presence of gas. However, it is clear that the soil is significantly underconsolidated.  相似文献   

3.
Abstract

Fiber Bragg Grating (FBG) technology has emerged as a relatively new sensing technology for engineering applications because of lots of advantages. In this study, a large diameter probe instrumented with FBG pressure sensors to monitor excess pore pressure in marine sediment is proposed. The principle of FBG differential pressure sensor was introduced. Laboratory tests were carried out to check the workability and stability of the FBG pressure sensor. Offshore field test was also conducted in a wharf in Qingdao of China to evaluate the feasibility of the proposed probe. The installation procedure of the probe was introduced in detail. The excess pore pressure in dissipation test, after installation and pulling process were reported. The permeability coefficient of marine sediment was calculated based on the measured data. The field data show that the proposed probe based on FBG pressure sensor has good feasibility and accuracy in monitoring the excess pore pressure of marine sediment. The generation and dissipation of excess pore pressure is closely related to the degree of soil disturbance. The variation of excess pore pressure after installation can reflect the tide well in the site.  相似文献   

4.
Abstract

The excess pore pressure accumulation is a key factor when estimating the formation mechanism of large pockmarks, as it determines the liquefaction potential of marine sediments due to water waves. The governing equations for excess pore pressure may have different forms for various types of sediments and then shall reflect the cyclic plasticity of the soil. For water waves propagating over a porous seabed, the liquefaction area induced by waves is generally progressive, which indicates that the liquefaction area will move forward following the wave train. Therefore, the excess pore pressure accumulation can be used to explain the occurrence of the large pockmarks, but the dimension of the pockmark may be related to the heterogeneity of sediment or the wave properties affected by the topography in the subaqueous Yellow River Delta.  相似文献   

5.
ABSTRACT

The purpose of this paper is to analyze the stability of submarine slope during the natural gas hydrate dissociation. A model is deduced to calculate the excess pore fluid pressure. In addition, a new method is proposed to define and calculate the factor of safety (FoS) of the submarine slope. Case study is also performed, results of which show that dissociation of hydrates would decrease the stability of submarine slope. If the cohesion of the hydrate-bearing sediments is small, the submarine slope would become unstable because of the shear failure. If the cohesion of the hydrate-bearing sediments is large enough, the tensile failure would happen in the hydrate-bearing sediments and the excess pore pressure may explode the submarine slope. Under the drained condition, the submarine slope may remain stable because the buildup of excess pore fluid pressure could not take place. Moreover, FoS would be underestimated by the assumption that natural gas hydrates dissociate in the horizontally confined space, but would be overestimated by only taking into account of the base of the natural gas hydrate-bearing sediments. The compressibility factor of natural gas should also be considered because treating natural gas as ideal gas would underestimate the stability of submarine slope.  相似文献   

6.
Abstract

Submarine trenching for pipeline installation in potentially unstable sediments has recently been of increasing concern. Although typical pipeline depths are less than 3 or 4 m, trenching operations generally cause local stress concentrations within the sediments and induce excess pore pressures. The result of these stress concentrations and pore pressure increases may be spreading of submarine slumps that can endanger pipelines or other nearby installations. A simplified analytical approach is described to estimate the extent of slump spreading caused by trenching. It is shown that the spreading potential is affected by many geotechnical characteristics of the sediments in addition to geomorphic processes and the oceanographic regimes governing the area. The primary geotechnical factors that influence spreading include the porepressure parameter Af , the degree of consolidation, the coefficient of earth pressure at rest, and the strength characteristics of the soil. Dimensionless parameters are developed to illustrate graphically the functional relationships among these parameters. A Gulf of Mexico soil profile is used to quantify the spreading phenomenon.  相似文献   

7.
A multisensor piezometer probe has measured pore pressures in fine-grained submarine sediments of the Mississippi Delta over a period of approximately eight months. Data presented here cover the initial 2650 hours of the experiment. Dynamic and ambient pore pressures were recorded. Analogue data collected from the time of probe insertion include decay characteristics, steady-state (ambient) excess pore pressures, and the response of pore pressures to surface wave activity. The probe was installed in 43–44 ft of water near an offshore platform in the East Bay area of the Delta. Sensors were located at 21, 41 and 51 ft below the mudline. Ambient excess pore pressures were determined to be 0.7, 2.8 and 6.6 psi (lb/in2) at the respective depths. The relatively high excess pressures and the measured laboratory wet unit weights of the soil result in a significantly low effective stress. Pressure fluctuations due to tidal and surface wave activity were observed to produce significant pore pressure response in these soils. Preliminary data obtained using high-airentry and corundum stones indicate that considerably more research is necessary in order to fully understand the peculiarities observed in the data and to assess the role of dissolved and free gas on the pore pressures in submarine sediments.  相似文献   

8.
Abstract

We have identified large pockmarks in an area of approximately 0.3?km2 in the subaqueous Yellow River Delta in the Chengdao Sea. Gas eruption channels not been identified in the sediment layers in this area, and the formation mechanism of these large pockmarks remains unknown. To study the formation mechanism of these large pockmarks, we constructed a layered silty sediment model composed of appropriate geological materials. Then, we calculated the stress, displacement, and excess pore pressure in the layered silty sediment from the surface to a depth of 10?m using the Biot theory. A comparative analysis of the calculated results and the data measured in the field was then performed. Based on these results, we established a new formation mechanism for the large pockmarks. With the occurrence of storm waves, two extreme areas of displacement and excess pore pressure appeared in the layered silty sediment. These extreme values increased quickly in the seabed during the continuous action of storm waves. When the excess pore pressure surpassed the effective stress, the top silty layer instantly liquefied and then reconsolidated. Then, when the pore pressure of the interface position exceeded the effective stress produced by the overlying sediment, the sediments experienced “sand boil” damage. With the repeated action of strong waves, the boundary of the pockmark continued to expand, forming a large and stable pockmark. This work is of great value for further understanding and mitigating marine geologic hazards, such as coastal erosion, silt deposition, and unstable sediment, in the subaqueous Yellow River Delta.  相似文献   

9.
Abstract

Deltaic sedimentation has produced an accumulation of clay and silt with a maximum thickness of 90 m in East Bay area. Sediments in the upper 50 m grade from interbedded sand, silt, and clay near South Pass and Southwest Pass to predominantly clay in the central part of the area. The variation in the types of sediments and rates of deposition greatly affected the engineering properties of these deposits. Sediments from boreholes in the central part of the area have shear strengths of less than 10 kPa to a depth of at least 50 m. Near the distributaries, shear strength increases with depth; values as high as 43 kPa were measured in sediments in the upper 50 m. These sediments are generally stronger and coarser, and have a lower water content and liquid limit than do sediments at comparable depths in the central part of the area.  相似文献   

10.
Deep-seated gas in seabed sediments migrates upwards from effect of external factors, which easily accumulates to form gasbags at interface of shallow coarse-fine sediments. Real-time monitoring of this process is important to predict disaster. However, there is still a lack of effective monitoring methods, so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment. This study focuses...  相似文献   

11.
ABSTRACT

A model test program for studying soil stratum failure and pore pressure variation during tetrahydrofuran (THF) hydrate dissociation considering the effects of heating and drainage conditions is presented in this paper. The temperature and pore pressures are recorded during heating. Test results show that the THF hydrate would dissociate to be liquid and then gas when heating. Once pore pressure generated by the flow of released gas/water exceeded the strength of over layer, the layered fractures and soil-gas/water mixture outburst would occur. The high heating temperature and low permeability of over layer both cause excess pore pressure generation and more serious stratum failures.  相似文献   

12.
We use flume experiments and numerical modeling to examine the penetration depth of internal solitary waves (ISWs) on partially saturated porous sandy silt and clayey silt seabed. The results of the experiment and model showed that the instantaneous excess pore water pressure in both the sandy silt and clayey silt seabed followed the same trend of decreasing with the seabed depth. In general, the excess pore water pressure generated by the sandy silt was bigger than that by clayey silt at the same depth. The ISW-induced excess pore water pressure greatly influenced the surface seabed and showed a linear relationship. The penetration depth was approximately one order of magnitude smaller than the half-wavelength of the ISWs, which might be larger than the penetration depth induced by surface waves. Our study results are helpful for understanding the damage that ISWs inflict upon the seabed and for informing future field experiments designed to directly measure the interaction between ISWs and seabed sediments.  相似文献   

13.
《Marine Chemistry》2002,79(1):37-47
Profiles of dissolved organic carbon (DOC) were measured in the pore water of sediments from 1000, 2000 and 3500 m water depth in the eastern North Atlantic. A net DOC accumulation in the pore waters was observed, which followed closely the zonation of microbial respiration in these sediments. The concentration of pore water DOC in the zone of oxic respiration was elevated relative to that in the bottom ocean water. The resulting upward gradient across the sediment–water interface indicated a steady state diffusive benthic flux, FDOC, of 0.25–0.44 mmol m−2 day−1 from these sediments. Subsequent increase in the concentration of DOC in the pore water occurred only in the sediments from 1000 and 2000 m water depth that supported anoxic respiration, leading to a deep concentration maximum. By contrast, in the sediments from 3500 m water depth, a deep concentration minimum was measured, coincident with minimal postoxic respiration in this near-abyssal setting. The gradient-based FDOC represented approximately 14% of the total remineralized organic carbon (TCR=sum of FDOC and depth-integrated organic carbon oxidation rate) in the sediments from 1000 and 2000 m water depth, while it was 36% of the TCR in the sediments from 3500 m water depth. A covariance of particulate organic carbon (POC) and pore water DOC with depth in the sediments was evident, more consistently at the deepest site. While the covariance can be related to biotic processes in these sediments, an alternative interpretation suggests a possible contribution of sorption to the biotic control on sedimentary organic carbon cycling. The steady state diagenetic conditions in which this may occur can be conceivable for some organic-poor deep-sea locations, but direct evidence is clearly required to validate them.  相似文献   

14.
Abstract

Volume change during natural gas hydrate dissociation is important for calculation of excess pore pressure and corresponding submarine slope stability. A short discussion is presented here to the paper of Wang et al. including some notes about the standard condition and parameters used in their model. This discussion calls attention to the wrong use of standard temperature and pressure during calculation of volume change, excess pore pressure, and submarine slope stability.  相似文献   

15.
A seabed 2-m-long cone penetrometer and coring system (Geotechnical Module) has been used at 17 stations in four transects on the Scotian Slope to characterise in situ shear strength and induced pore pressure on several different types of late Pleistocene and early Holocene failure. Study sites were selected using the SAR high-resolution deep-towed acoustic system equipped with a digital 160–190 kHz sidescan sonar and a 3.5 kHz subbottom profiler.

Several distinctive types of “geotechnical signature” were recognised from plots of cone resistance and induced pore pressure with depth in the sediment. Normally consolidated sediments show a progressive increase in cone resistance with depth (to about 75 kPa at 2 m subbottom). Holocene surficial muds show spectacular apparent overconsolidation, reaching a peak of 250 kPa at about 50 cm subbottom and then decreasing down to 1.5 m. This overconsolidation is associated with Zoophycos burrows. Late Pleistocene sediments exhumed by bedding plane slides show strong true overconsolidation consistent with the original depth of burial inferred from high-resolution seismic stratigraphy. Debris flows show only a slight shear stress gradient with depth (40–45 kPa over 0.5–1 m subbottom) with under-consolidation due to remoulding of sediment.  相似文献   


16.
Abstract

The behavior of gas‐laden, soft submarine soils subjected to changes in mean normal and shearing stresses is discussed. Information developed for partially saturated soils is extended to soft sediments. Calculations indicating that gas‐laden submarine soils generally have degrees of saturation in situ that exceed ~ 90% are presented. Therefore, it is suggested that insignificant error is introduced in predicting the effective stresses of soft sediments using the standard effective stress equation and neglecting the pore‐gas pressure.

The presence of gas is shown to permit volume changes of soft sediments under wave loadings. The compressibility of the gaswater pore fluid is quantified. The pore‐pressure response, related to the ratio of the compressibility of the pore fluid and soil structure, is shown to be similar to that of fully saturated soils. The relevance of “undrained”; shipboard tests to the prediction of slope stability is discussed. It is concluded that the presence of gas leads to undrained strengths, as measured on recovered samples, which are lower than those that occur in situ. The use of these measured strengths in stability calculations leads to conservative predictions of submarine slope stability.  相似文献   

17.
Internal solitary wave(ISW) is often accompanied by huge energy transport, which will change the pore water pressure in the seabed. Based on the two-dimensional Biot consolidation theory, the excess pore water pressure in seabed was simulated, and the spatiotemporal distribution characteristics of excess pore water pressure was studied. As the parameters of both ISW and seabed can affect the excess pore water pressure, the distribution of pore water pressure showed both dissipation and phase lag...  相似文献   

18.
针对内孤立波在行进过程中遇到海底斜坡会对海底产生力的作用,不同坡度斜坡对内孤立波的动力响应应该存在差异.本文通过水槽中制造内波,对不同角度的斜坡对内孤立波的动力响应过程进行了研究.结果表明,内孤立波通过陆架斜坡上方,会造成斜坡沉积物超孔隙水压力的积累;在相同振幅条件下,缓坡沉积物动力响应的幅度比陡坡沉积物大;随着振幅的...  相似文献   

19.
孔压探杆贯入及潮汐作用下超孔压响应规律研究   总被引:1,自引:0,他引:1  
Excess pore water pressure is an important parameter that can be used to analyze certain physical characteristics of sediment. In this paper, the excess pore water pressure of subseafloor sediment and its variation with tidal movement was measured following the installation of a wharf in Qingdao, China by using a fiber Bragg grating(FBG) piezometer. The results indicated that this FBG piezometer is effective in the field. The measured variation of excess pore water pressure after installation is largely explained by the dissipation of excess pore water pressure. The dissipation rate can be used to estimate the horizontal consolidation coefficient, which ranged from1.3×10~(–6) m~2/s to 8.1×10~(–6) m~2/s. The measured values during tidal phases are associated with the variability of tidal pressure on the seafloor and can be used to estimate the compressibility and the permeability of the sediment during tidal movement. The volume compression coefficient estimated from tidal oscillation was approximately2.0×10~(–11) Pa~(–1), which was consistent with the data from the laboratory test. The findings of this paper can provide useful information for in situ investigations of subseafloor sediment.  相似文献   

20.
内孤立波浅化破碎过程斜坡沉积物孔压响应特征实验分析   总被引:2,自引:2,他引:0  
观测资料显示内孤立波沿斜坡浅化过程对海底沉积物的作用犹如一台水中吸尘器,在破碎转换阶段达到最强,甚至会触发一系列地质活动,引发地质灾害。为界定此过程中沉积物的动力响应特征和影响因素,在大型重力式分层流水槽中模拟不同振幅内孤立波和不同类型沉积物斜坡连续作用过程,利用孔隙水压力采集系统实时记录孔隙水压力变化,对比分析不同水动力、坡度、沉积物类型情况下沉积物中超孔压变化特征。分析结果表明,内孤立波破碎过程,破波位置海床表层波压力和不同深度超孔隙水压力都存在相似的"U"型负压力变化过程;破碎波经过位置沉积物表现为和表面波压力正相关的孔压响应特征。破碎点沉积物中超孔压幅值随深度减小,约在6%波长深度位置减少到坡面压力的50%。超孔压幅值和内孤立波振幅、沉积物类型和斜坡度密切相关,坡度由0.071变化到0.160时,波压力幅值可增大至1.6倍。内孤立波振幅变化不影响不同类型海床土动力响应规律,只与超孔隙水压力值大小有关,内孤立波对海床的动力作用可认为弹性作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号