首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of batch tests have been presented to investigate the effects of solid-solution contact time, solid:solution ratio, and pH of solution on sorption of Cd2+ and Pb2+ on Ariake clay from Kyushu region of Japan. The results show that, among the three investigated factors, solid:solution ratio (SD/SN) seems to be the crucial controlling factor. The Freundlich sorption parameters determined from the batch tests were applied to a typical field landfill in which the Ariake clay was used as soil barrier. The impacts of the landfill were assessed by numerical analysis. Based on the analysis result, the significance of selecting proper solid:solution ratio for determining sorption parameters from batch test has been discussed.  相似文献   

2.
The uplift behavior of a plate anchor in a structured clay (soft Ariake clay) is investigated through a series of laboratory tests and method of finite element analysis. The tests are adopted to identify the factors influencing the behavior of the anchor, including the thixotropic nature of Ariake clay, consolidation time, and embedment ratio of the anchor. A finite element method (FEM) is used to analyze and predict the uplift behavior of the anchor plate well in the elastic region and the yield load. The results from both the laboratory tests and the FEM analysis suggest that the embedment ratio for a deep anchor in Ariake clay is close to 4. Further increase in embedment ratio improves the capacity to a lesser extent. FEM overestimates the failure load of the uplift anchor in soft Ariake clay by about 20%. This may be ascribed to the hypothesis in the FEM analysis that there is continuous contact between the clay and the anchor until failure. Vesic’s theory for deep anchors, which may be used to predict the ultimate pullout resistance of the plate anchor in reconstituted Ariake clay, is verified to be applicable. In this paper, the plastic flow zone around the anchor is discussed using FEM which makes the behavior of anchor more understandable during the design stage.  相似文献   

3.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) Skempton, A. W. 1970. “The consolidation of clays by gravitational compaction”. In Q. J. Geol. Soc 373411.  [Google Scholar] for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990) Burland, J. B. 1990. On the compressibility and shear strength of natural clays. Gèotechnique, 40: 329378. [Crossref], [Web of Science ®] [Google Scholar]. When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8–1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

4.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990). When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8-1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

5.
ABSTRACT

In this study, settling tests were conducted to investigate the sedimentation and self-weight consolidation behavior of seafloor sediments from Isahaya Bay, Ariake Sea, Japan. During the tests, the density variations with depth and time were measured by a gamma-ray transmission radioisotope densitometer. The test results show that the settling process of the seafloor sediments can be classified into the flocculation stage, settling stage, and consolidation stage. The settling rate of the seafloor sediments in the settling stage is dependent on the temperature and initial water content, while the settling rate in the consolidation stage is independent of the temperature and initial water content. The density profile changes from a constant density profile to a linear density profile when the sedimentation process transitions to the self-weight consolidation process. The relations between the void ratio (e) and effective vertical stress (p’) at very low pressures can be calculated from the measured density values, and this can be used for the analysis of the self-weight consolidation of seafloor sediments. For the seafloor sediments tested in this study, the undrained shear strength (su) values are almost the same when the density values are less than 1.14?g/cm3, and the su values increase linearly with an increase in density when the density values are in the range of 1.14–1.2?g/cm3.  相似文献   

6.
Abstract

The present study aims to assess whether the smectite‐rich Cochin and Mangalore clays, which were deposited in a marine medium and subsequently uplifted, exhibit consistency limits response typical of expanding lattice or nonexpanding (fixed) lattice‐type clays on artificially changing the chemical environment. The chemical and engineering behaviors of Cochin and Mangalore marine clays are also compared with those of the smectite‐rich Ariake Bay marine clay from Japan. Although Cochin, Mangalore, and Ariake clays contain comparable amounts of smectite (32–45%), Ariake clay exhibits lower consistency limits and much higher ranges of liquidity indices than the Indian marine clays. The lower consistency limits of the Ariake clay are attributed to the absence of well‐developed, long‐range, interparticle forces associated with the clay. Also, Ariake clay exhibits a significantly large (48–714 times) decrease in undrained strength on remolding in comparison to Cochin and Mangalore clays (sensitivity ranges between 1 and 4). A preponderance of long‐range, interparticle forces reflected in the high consistency limits of Cochin and Mangalore clays (wL range from 75 to 180%) combined with low natural water contents yield low liquidity indices (typically <1) and high, remolded, undrained strengths and are considered to be responsible for the low sensitivity of the Indian marine clays.  相似文献   

7.
The results of a 57Fe Mössbauer spectroscopic and X-ray diffraction study of four pelagic clay sediments from the Southwestern Pacific Basin collected at increasing distances from New Zealand, on a New Zealand—Rarotonga transect, are presented. These show that, with increasing distance from New Zealand, the Fe3+/Fe2+ ratio of the sediment increases as a result of the increasing contribution of the X-ray amorphous secondary hydrous iron oxides, notably ferrihydrite, due to the longer sedimentation periods and consequent greater degree of oxidation of the sediments. This increase in the Fe3+/Fe2+ ratio is correlated with the change in colour of the sediments from pale yellowish to dusky brown, as well as a number of other sediment parameters. Apart from a slight increase in the relative abundance of montmorillonite with increasing distance from New Zealand, the abundances of the other clay minerals, illite and kaolinite, and of chlorite in the sediments are approximately equal. Quartz and feldspar with minor augite are the dominant detrital minerals. Calcite is present in minor amounts in some of the sediments.  相似文献   

8.
The method of DeMaster (1981) for measuring biogenic silica (BSi) in marine sediments was modified. We found a considerable effect of the solid to solution (S/S) ratio on BSi determination in coastal sediments. The BSi contents determined by DeMaster’s method were overestimated due to the contribution of clay mineral-derived extractable Si at a low S/S ratio (<1 g l−1), and incomplete recovery of BSi was observed due to incomplete extraction when using a high S/S ratio (>2 g l−1). For BSi analysis of coastal sediment samples, the BSi content of representative samples must be measured using various S/S ratios to determine the appropriate S/S ratio in order to minimize the contribution of extractable Si derived from clay minerals and to obtain sufficiently efficient extraction with 1% Na2CO3 before actual sample measurement. One way to determine the appropriate S/S ratio is to use artificial sediment which has a theoretical Si and clay mineral content similar to the sediment sample composition. Using artificial sediment, the S/S ratio of 2 g l−1 seems appropriate for measuring the BSi content of the coastal sediments investigated in this study, because 99.6% recovery can be achieved.  相似文献   

9.
ABSTRACT

Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

10.
Prediction of Settlements of Soft Clay Subjected to Long-Term Dynamic Load   总被引:2,自引:0,他引:2  
—Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stressFEM method.The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay isused to predict the wave induced excess pore water pressure and residual strain of soft clay.The settle-ments of two types of breakwaters on the soft clay under ocean wave load,a low embankment subjected totraffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculatedas examples.  相似文献   

11.
The Taiwan Strait region has many miles of coastline, and the Taiwan Straits Tunnel (TST) project faces many potential pollution problems as construction proceeds through sensitive areas. Conventional approaches for pollution mitigation require further examination. The recent development of nanoscale particle technology has shown distinct advantages for contaminant attenuation and ground improvement. This paper is focused on trace metals and is part of the overall effort to develop the nanoscale particle technology. Trace metals in ground and surface waters represent a continued threat to human and ecological health. One of the difficulties in removing toxic concentrations of trace metals from solution is the variable oxidation state and amphoteric nature of multiple constituents. In particular, while cationic metals (e.g., Pb2+, Cd2+, Ni2+) may be rendered less mobile under high pH conditions, anionic metals (e.g., AsO4 3?, CrO4 2?, SeO4 2?)may become more mobile. The objective of this research was to evaluate the sorption of both cationic and anionic trace elements, including arsenic (As), cadmium (Cd), chromium (Cr) and selenium (Se) under batch conditions. Mixtures of a local residual soil were tested alone and in combination with lime and zero valent iron. It was hypothesized that lime would raise the pH and precipitate positively charged metals while zero valent iron would create reducing conditions favorable to the immobilization of negatively charged metals. Results indicate that the use of lime and/or zero valent iron can increase the sorption capacity of soil. Compared to the baseline soil, sorption capacity increased with addition of lime for arsenic and cadmium while it decreased for chromium and selenium. In the case of zero valent iron addition, sorption capacity increased for cadmium, chromium and selenium, while showing no change for arsenic. When both lime and zero valent iron were used, the sorption capacity increased for all metals tested. These results suggest that the combined use of lime and zero valent iron may serve as an alternative treatment technology for removing trace metals from contaminated water systems.  相似文献   

12.
The inner part of Isahaya Bay was converted to a freshwater reservoir following the closure of the land claim dike in 1997. Turbid water drains into Isahaya Bay when water levels increase. We investigated whether particulate organic matter (POM) from the reservoir in Isahaya Bay has caused bottom organic enrichment in the northern part of Ariake Bay. Using potential end-members from before to after the rainy seasons, during which a frequent discharge from the reservoir was expected, stable isotope analyses were performed on sediments collected from Isahaya Bay and northern Ariake Bay. Each end-member was isotopically differentiated by δ13C and δ15N (riverine POM: ?28.5 to ?27.2‰ and 3.3–4.6‰; reservoir POM: ?25.7 to ?25.3‰ and 7.4–8.4‰; marine POM: ?21.8 to ?19.7‰ and 6.7–7.6‰; microphytobenthos estimated from consumers: ?16.1 to ?15.9‰ and 5.2–6.1‰, respectively). Sediment isotopic signatures fell within the mixing space defined by the signatures of the end-members. Marine POM contributed greatly to bottom sediments in both seasons in Isahaya Bay and Ariake Bay, ranging from ca. 60–70 and 40–60%, respectively. Reservoir POM contributed around 10% to bottom sediments. This percentage slightly increased in the sediment of Isahaya Bay after the rainy season, but decreased in the sediment of Ariake Bay. Thus, most of the POM discharged from the reservoir would not reach the northern part of Ariake Bay and would not be a major contributor to organic enrichment. This study is the first to quantitatively describe the contribution of drained reservoir POM outside Isahaya Bay.  相似文献   

13.
The distribution coefficient (λMg) of Mg2+ ions between calcite and solution was found to be 0.012 ± 0.001 (10°C), 0.014 ± 0.001 (15°C), 0.019 ± 0.001 (25°C), 0.024 ± 0.001 (30°C), 0.027 ± 0.001 (35°C) and 0.040 + 0.003 (50°C). This indicates a remarkable dependence on temperature. The effect of the Mg2+/Ca2+ molar ratio in a parent solution on λMg for calcite is small, where the molar ratio lies in the range 0.04-2. However, the λMg value for aragonite tends to decrease with increasing Mg2+/Ca2+ ratio in the parent solution. The largest Mg content of calcite in the Ca(HCO3)2-Mg2+ → calcite system is around 2 mol% in the temperature range 10–50°C. Neither homogeneous nor heterogeneous distribution laws hold for aragonite precipitation, and the temperature effect on the coprecipitation of Mg2+ ions with aragonite is very small.  相似文献   

14.
A suite of selected Tertiary mudstones was studied to improve the knowledge about microstructure and related transport processes in mudstones. Samples were investigated by mercury- and Wood's metal injection, SEM, XRD, and grain size analysis. Wood's metal injection has the advantage of visualising the ‘frozen’ injection process. The smallest pore casts observed were down to 40 nm in diameter, while the largest, bottle-shaped pores were up to 5 μm in diameter. Bottle-shaped pores occurred in all the samples, usually around silt or sand grains. One sample, which had a porosity of 28.5% according to mercury injection data, had not been impregnated by the molten alloy. We suggest this to reflect a strong deformation of the clay fabric by the high pressure without intrusion into the matrix. This raises questions about the reliability of mercury injection data for very fine-grained, highly porous sediments.After excluding these very fine-grained samples and one very calcareous sample regressions were found which relate porosity (φ), clay content (C), and sand content (S) to capillary displacement pressure (Pd(Hg)): Pd(Hg)=−25.05+0.63 C+0.29S (R2=0.92), and Pd(Hg)=−10.24+0.47 C−0.15φ (R2=0.88).  相似文献   

15.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   

16.
Japanese seaperch Lateolabrax japonicus migrate from Ariake Bay to the estuarine turbidity maximum (ETM) zone of the Chikugo River and inhabit there through the post-migration period (15–20 mm in standard length). The feeding, growth and mortality during the post-migration period of Japanese seaperch were analyzed in relation to seasonal changes in temperature and prey concentration. Larvae and juveniles were collected from ten sampling stations at 4–7 day intervals from 24 February to 24 April 2005 in the Chikugo estuary. Based on the otolith microstructure analysis the sampled fish were divided into nine cohorts, each cohort covering a 5 day hatch date period (22 December 2004 to 4 February 2005). The growth coefficient (G, day−1) was higher and the mortality coefficient (M, day−1) was lower in the later cohorts. The ratio of G to M as an index of stage-specific survival during the post-migration period significantly increased as the season progressed and exceeded 1.0 in the last cohort examined. Variability in abundance of the major prey organism, Sinocalanus sinensis, had a significant effect on the Japanese seaperch ingestion rate. Increase in temperature and spring bloom of S. sinensis is concluded to provide the later cohorts with a higher survival probability through increasing ingestion and growth rates during their post-migration period in spring 2005.  相似文献   

17.
Dissolved and particulate manganese in seawater samples derived from the English Channel has been analyzed using graphite furnace atomic absorption (GFAAS), and inductively coupled plasma atomic emission (ICP—AES) spectroscopies. Because of the high contents of carbonate minerals found in the suspended matter samples, the English Channel constitutes an ideal field area for the study of the Mn2+/Ca2+/CaCO3 system. Owing to the chemical speciation of particulate manganese and the combined use of the X-ray diffraction and electron spin resonance spectroscopy we have shown the importance of the carbonate phase in the stabilization of manganese (II). This has been confirmed by p-pH measurements in the field. All these studies have also indicated that: (1) manganese is associated with calcite in the form of a solid solution, MnxCa1−xCO3; and (2) significant increases in the concentrations of particulate manganese, especially in offshore waters, occur in summer. This seasonal phenomenon has been attributed to the proliferation of coccolithophorids, which are known to be covered with calcified skeletons at high specific surface areas. To appraise the implication of the coccolithophorid-blooms phenomenon on the Mn2+/Ca2+/CaCO3 system, we have used the manganese distribution coefficient, Di, between the liquid phase and CaCO3 particles. Overall we have shown that: (1) Di in summer (i.e. when coccoliths considered as very fine-grained calcite are abundant) is much higher than that obtained in winter; and (2) in the vicinity of the French coast, Di does not vary significantly even in summer. This is because of the high content of chalk-derived particles found in the near-shore waters.  相似文献   

18.
The Pb content of natural deep-sea ferromanganese deposits decreases with depth. This is commonly explained by assuming oxidation of Pb2+ and uptake as (Mn, Pb)O2 in normally oxygenated shallow water, a process that is less likely to occur in deep water which is somewhat depleted in oxygen. This concept is discussed and rejected, both on theoretical grounds and based on experimental results of Pb2+ sorption by Mn oxides. Comparative sorption experiments on Mn oxides were carried out with Pb and Ba. It is shown that Pb is preferentially adsorbed by birnessite at pH ? 4. The uptake ratio is, however, much lower than the relative enrichment factor in natural nodule material. Suggested explanations for this discrepancy are: influence of hydrostatic pressure and extent of hydrolysis of the cations at the pH of ocean water.  相似文献   

19.
Contamination of acidic red soil in the coastal areas of Okinawa Islands is a serious environmental problem. This study was conducted to examine the effects of the salinity on pH and aluminum concentration when the acidic red soil interacts with seawater. Acidic red soil from Gushikawa recreation center was fractionated into bulk soil, coarse sand and silt + clay. Different weights of each fraction were equilibrated with seawater solutions. The pH and concentrations of Al3+, Na+, K+, Ca2+ and Mg2+ were then analyzed in the extracts. The results showed a decreasing trend of pH with increasing soil to solution ratio while the extracted Al3+ revealed an increasing trend. The lowest pH values were 3.85, 4.06, 4.41, 4.66 and their corresponding highest Al3+ concentrations were 2.50, 1.01, 0.062 and 0.036 mmolL−1 in the seawater extracts, one-tenth seawater extracts, one-hundredth seawater extracts and one-thousandth seawater solution extracts, respectively. Mostly, the concentrations of Na+, Ca2+, Mg2+ and especially K+ decreased with increasing soil weight in the high salinities but showed the opposite trend in the low salinity samples. Potassium concentration decreased by 39%, 53% and 40% in the seawater extracts, one-tenth and one-hundredth seawater extracts but increased by 200% in one-thousandth seawater extracts. The coincidence of the increase in Al3+ and H+ concentrations, and the decrease of Na+, K+, Ca2+ and Mg2+ concentrations in the solutions suggests ion exchange/adsorption, while the increased patterns, particularly at low salinity could be attributed to the dissolution of the species from the soils.  相似文献   

20.
Samples of dead biomass from the marine brown algae Fucus ceranoides, Fucus vesiculosus and Fucus serratus were studied for their ability to remove cadmium from aqueous solutions. The metal sorption process is rapid, with 90% of the metal uptake completed within the first 25 min of contact. The kinetic data was described successfully by a pseudo second order chemical sorption process with rate constants of ca. 0.6 g mmol− 1 min− 1. At pH 4.5, the raw biomass of the three species exhibited equilibrium uptake capacities for Cd as high as 0.8 mmol g− 1 (90 mg g− 1), on a dry weight basis, without chemical pretreatment. These sorption capacities are much higher than those reported for activated carbon and chitin. The sorption of Cd was found to increase as pH increases, reaching a plateau at pH 5.Batch sorption experiments and continuous potentiometric titrations of acid-treated biomass samples in 0.05 M NaNO3 were used to derive thermodynamic binding parameters according to the NICCA model. The total amount of acid sites was 2.4–2.9 mmol g− 1, with median values of the affinity distribution for protons and cadmium ions, log H and log Cd, of 3.7 and 2.69, respectively (conditional values). The apparent heterogeneity of the sorbent was successfully taken into account by the empirical NICCA isotherm, which described very well the competition between protons and metal ions, in contrast with a simpler discrete competitive Langmuir model.The experimental results demonstrate that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for cadmium removal from wastewaters. This use would represent an example of exploitation of a renewable marine resource in water treatment technologies for the prevention of heavy metal pollution in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号