首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents new application of group method of data handling (GMDH) to predict scour depth around a vertical pier in cohesive soils. Quadratic polynomial was used to develop GMDH network. Back propagation algorithm has been utilized to adjust weighting coefficients of GMDH polynomial thorough trial and error method. Parameters such as initial water content, shear strength, compaction of cohesive bed materials, clay content of cohesive soils, and flow conditions are main factors affecting cohesive scour. Performances of the GMDH network were compared with those obtained using several traditional equations. The results indicated that the proposed GMDH-BP has produced quite better scour depth prediction than those obtained using traditional equations. To assign the most significant parameter on scour process in cohesive soils, sensitivity analysis was performed for the GMDH-BP network and the results showed that clay percentage was the most effective parameter on scour depth. The error parameter for three classes of IWC and Cp showed that the GMDH-BP model yielded better scour prediction in ranges of IWC = 36.3–42.28% and Cp = 35–100%. In particular application, the GMDH network was proved very successful compared to traditional equations. The GMDH network was presented as a new soft computing technique for the scour depth prediction around bridge pier in cohesive bed materials.  相似文献   

2.
Scouring in the channel contractions occurs due to the flow concentration within them inducing excessive bed shear stress. This is a complex process, so it is difficult to describe it through a general empirical model, the present research work describes contemporary conceptual relationships to estimate the local scour depth under equilibrium and clear water conditions in rectangular channels. Incidentally, gene-expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT)-based formulations were utilized to predict the scour depth at long contractions. The input variables comprising average flow velocity, critical threshold velocity of sediment movement, flow depth, median particle diameter, geometric standard deviation, and uncontracted and contracted channel widths were used to feed the applied models. The performances of the developed approach were compared with those calculated using existing scour prediction equations. The results showed that the developed MT approach in terms of linear relationships could predict the scour depth more precisely than GEP, EPR, and the traditional equations. What is more, dimensionless parameter of h1/b1 (ratio of upstream flow depth to uncontracted channel width) was determined as the most influential variable in predicting the scour depth in long contractions.  相似文献   

3.
This paper presents the results of an experimental investigation on three-dimensional scour below offshore pipelines subject to steady currents. The major emphasis of the investigation is on the scour propagation velocity along the pipeline after the scour initiation. Physical experiments were conducted to quantify the effects of various parameters on scour propagation velocity along the pipeline in a water flume of 4 m wide, 2.5 m deep and 50 m long. Local scour depths directly below the model pipeline were measured using specifically developed conductivity scour probes. Effects of various parameters such as pipeline embedment depth, incoming flow Shields parameter and flow incident angle (relative to the pipeline) on scour propagation velocity along the pipeline were investigated. It was found that scour propagation velocity generally increases with the increase of Shields parameter but decreases with the increase of the pipeline embedment depth. A general predictive formula for scour propagation velocity is proposed and validated against the experimental results.  相似文献   

4.
Abstract

The mechanism of local scour under two vibrating pipelines is investigated numerically in this research. A sediment scour model is adopted to estimate the motion of sediment. The general moving objects model, which is dynamically coupled with fluid flow, is set up to simulate the vortex-induced vibration (VIV) of the pipeline. The sediment scour model and pipeline vibration model are verified with the previous experimental results and show good agreement. Then, the coupling effects between the pipeline vibration and the local scour are investigated numerically. The effects of G/D (the ratio of the distance between the two pipelines to the diameter of the pipelines) on the local scour and the VIV of the pipeline are examined. The results indicate that the maximum scour depth under the vibrating pipelines is much larger than the scour depth under the fixed pipelines. Due to the shadowing effect of the upstream pipeline, the maximum scour depth under the upstream pipeline is deeper than that under the downstream pipeline. The pipeline vibration magnitude is closely related to the strength of the vortex that sheds behind the pipeline. The effect of G/D on the shape and strength of the vortices that shed behind the pipelines is significant.  相似文献   

5.
This paper presents the results of an experimental investigation on three-dimensional local scour below a rigid pipeline subjected to wave only and combined wave and current conditions. The tests were conducted in a conventional wave flume. The major emphasis of the investigation was on the scour propagation speed (free span expansion rate) along the pipeline after local scour was initiated at a controlled location. The effects of flow ratio (steady current velocity vs. combined waves/current velocity), flow incidence angle and pipeline initial embedment depth on free span expansion rate were investigated. It was observed that the scour along the pipeline propagated at a constant rate under wave only conditions. The scour propagation rate decreased with increasing embedment depth, however, increased with the increasing Keuglegan–Carpenter (KC) number. Under combined wave and current conditions, the effect of velocity ratio on scour propagation velocity along the pipeline was quantified. Empirical relationships between the scour propagation rate (Vh) and key parameters such as the KC number and embedment depth (e/D) were established based on the testing results.  相似文献   

6.
Existence of debris structures inevitably ascends the rate of scour process around bridge piers and flow area not only lead into remarkable deviation of flow but also increase the velocity around bridge piers. A myriad of experimental and field studies to understand effective parameters on the scour depth with debris effects were conducted. To reach permissible values of the scour depth for the practical uses, relationships extracted in previous investigations suffer from lack of generalization for experimental data ranges. In this way, neuro-fuzzy group method of data handling (NF-GMDH)-based self-organized models is applied to evaluate the pier scour depth. In this study, NF-GMDH network is implemented using evolutionary algorithms listed particle swarm optimization (PSO), gravitational search algorithm (GSA), and genetic algorithm (GA). In all, 243 experimental datasets including a wide range of input and output parameters to develop the proposed models were compiled from various literature. The efficiency of NF-GMDH networks for training and testing stages was perused. NF-GMDH-PSO model provided the scour depth with more precise predictions (root mean squared error (RMSE)?=?0.388 and scatter index (SI)?=?0.343) in comparison with NF-GMDH-GA (RMSE?=?0.402 and SI?=?0.361) and NF-GMDH-GSA (RMSE?=?0.456 and SI?=?0.407) networks. In addition, blockage ratio (ΔA) was taken into account as the most sumptuous parameter with utmost level of effectiveness using the sensitivity analysis.  相似文献   

7.
由于海床起伏不平,斜坡的存在必然改变波浪对管线及海床的作用特性,进而影响管线三维冲刷。基于波浪港池实验,考虑规则波的作用,采用中值粒径为0.22mm的原型沙铺设与波浪传播方向成45°夹角的斜坡,研究斜向波作用下斜坡上海底管线的三维冲刷特性。通过测量管线下方冲刷坑宽度和深度的差异,分析管线三维冲刷的不均衡性。实验表明:管线的存在使斜坡上的波高有所降低;斜向波作用下管线三维冲刷的不均衡性表现为深度不均衡性和宽度不均衡性,宽度不均衡性主要是管后淤积泥沙的后移引起的,周期对三维冲刷不均衡性的影响比波高对其的影响程度大;管线自深海向近岸延展时,随水深的减小,冲刷深度分为缓慢发展阶段和快速发展阶段。  相似文献   

8.
Estimation of pile group scour using adaptive neuro-fuzzy approach   总被引:4,自引:0,他引:4  
S.M. Bateni  D.-S. Jeng   《Ocean Engineering》2007,34(8-9):1344-1354
An accurate estimation of scour depth around piles is important for coastal and ocean engineers involved in the design of marine structures. Owing to the complexity of the problem, most conventional approaches are often unable to provide sufficiently accurate results. In this paper, an alternative attempt is made herein to develop adaptive neuro-fuzzy inference system (ANFIS) models for predicting scour depth as well as scour width for a group of piles supporting a pier. The ANFIS model provides the system identification and interpretability of the fuzzy models and the learning capability of neural networks in a single system. Two combinations of input data were used in the analyses to predict scour depth: the first input combination involves dimensional parameters such as wave height, wave period, and water depth, while the second combination contains nondimensional numbers including the Reynolds number, the Keulegan–Carpenter number, the Shields parameter and the sediment number. The test results show that ANFIS performs better than the existing empirical formulae. The ANFIS predicts scour depth better when it is trained with the original (dimensional) rather than the nondimensional data. The depth of scour was predicted more accurately than its width. A sensitivity analysis showed that scour depth is governed mainly by the Keulegan–Carpenter number, and wave height has a greater influence on scour depth than the other independent parameters.  相似文献   

9.
Abstract

Exact evaluation of scour depth around piers under debris accumulation is crucial for the safe design of pier structures. Experimental studies on scouring around pier bridges with debris accumulation have been conducted to estimate the maximum scour depth using various empirical relationships. However, due to the oversimplification of a complex process, the proposed relationships have not always been able to accurately predict the pier scour depth. This research proposes linear genetic programming (LGP) approach as an extension of the genetic programming to predict the scour depth around bridge piers. Among the artificial intelligence techniques, LGP and locally weighted linear regression (LWLR) models have not been used to predict the scour depth at bridge piers. Literature experimental data were collected and used to develop the models. The performance of the LGP method was compared with gene-expression programming, LWLR, multilinear regression and empirical equations using rigorous statistical criteria. The correlation coefficient (R) and the root mean squared error (RMSE) were (R?=?0.962, RMSE =0.31) and (R?=?0.885, RMSE =0.542) for the LGP and LWLR, respectively. The results demonstrated the superiority of the LGP method for increasing the accuracy of the predicted scour depth in comparison with the other models.  相似文献   

10.
通过物理模型试验研究水流作用下轴线倾斜海底管道的三维局部冲刷问题。利用超声波探头监测管道下部冲刷沿管轴线方向的扩展过程,分析海底管道三维局部冲刷的动态发展机理。由模型沙的冲蚀试验,建立沙床面剪切应力与泥沙表观侵蚀速率之间的关系式,并引入经验公式对沙床面剪切应力放大系数、泥沙表观侵蚀速率以及远场床面剪切应力之间的关系进行表达。由倾斜管道模型试验,在分析冲刷扩展位置随时间变化数据的基础上,结合上述经验公式以及沙床面剪切应力放大系数与管道埋深的关系,建立轴线倾斜海底管道冲刷扩展速率的预测公式。  相似文献   

11.
12.
The scour around submarine pipelines may influence their stability; therefore scour prediction is a very important issue in submarine pipeline design. Several investigations have been conducted to develop a relationship between wave-induced scour depth under pipelines and the governing parameters. However, existing formulas do not always yield accurate results due to the complexity of the scour phenomenon. Recently, machine learning approaches such as Artificial Neural Networks (ANNs) have been used to increase the accuracy of the scour depth prediction. Nevertheless, they are not as transparent and easy to use as conventional formulas. In this study, the wave-induced scour was studied in both clear water and live bed conditions using the M5’ model tree as a novel soft computing method. The M5’ model is more transparent and can provide understandable formulas. To develop the models, several dimensionless parameter, such as gap to diameter ratio, Keulegan-Carpenter number and Shields number were used. The results show that the M5’ models increase the accuracy of the scour prediction and that the Shields number is very important in the clear water condition. Overall, the results illustrate that the developed formulas could serve as a valuable tool for the prediction of wave-induced scour depth under both live bed and clear water conditions.  相似文献   

13.
The process of scour around submarine pipelines laid on mobile beds is complicated due to physical processes arising from the triple interaction of waves/currents, beds and pipelines. This paper presents Artificial Neural Network (ANN) models for predicting the scour depth beneath submarine pipelines for different storm conditions. The storm conditions are considered for both regular and irregular wave attacks. The developed models use the Feed Forward Back Propagation (FFBP) Artificial Neural Network (ANN) technique. The training, validation and testing data are selected from appropriate experimental data collected in this study. Various estimation models were developed using both deep water wave parameters and local wave parameters. Alternative ANN models with different inputs and neuron numbers were evaluated by determining the best models using a trial and error approach. The estimation results show good agreement with measurements.  相似文献   

14.
In the field of offshore oil and gas engineering, the arrangement of multiple pipelines are becoming more common, the spacing between the pipelines and the incoming stream velocity will significantly affect the scouring process around the pipelines. In this study, the effect of space ratio (G/D) and the stream velocity on the scouring process around two pipelines in tandem are investigated using the coupled approach of computational fluid dynamics (CFD) and discrete element method (DEM). Here G is the spacing between the pipelines and D is the diameter of the pipeline. Specifically, the effect of space ratio and the stream velocity are discussed by simulating the gap ratio (G/D) between two pipelines ranging from 1 to 3 with an interval of 1, under the stream velocity U = 0.5,1 and 2 m/s, The results indicate that when G/D ≤ 2, the equilibrium scour depth below the upstream pipeline (S1) is slightly larger than that under the downstream pipeline (S2), S1 and S2 slightly increase as the gap ratio increases. Whereas for G/D > 2, the equilibrium scour depth beneath the upstream pipeline is slightly smaller than that under the downstream pipeline, S1 and S2 slightly decrease as the gap ratio increases. Furthermore, the scour depths are highly dependent on and positively related to the incoming stream velocity, the equilibrium bed profiles are similar under the same incident stream velocity with different gap ratios.  相似文献   

15.
16.
Abstract

The scour phenomena around vertical piles in oceans and under waves may influence the structure stability. Therefore, accurately predicting the scour depth is an important task in the design of piles. Empirical approaches often do not provide the required accuracy compared with data mining methods for modeling such complex processes. The main objective of this study is to develop three data-driven methods, locally weighted linear regression (LWLR), support vector machine (SVR), and multivariate linear regression (MLR) to predict the scour depth around vertical piles due to waves in a sand bed. It is the first effort to develop the LWLR to predict scour depth around vertical piles. The models simulate the scour depth mainly based on Shields parameter, pile Reynolds number, grain Reynolds number, Keulegan–Carpenter number, and sediment number. 111 laboratory datasets, derived from several experimental studies, were used for the modeling. The results indicated that the LWLR provided highly accurate predictions of the scour depths around piles (R?=?0.939 and RMSE = 0.075). Overall, this study demonstrated that the LWLR can be used as a valuable tool to predict the wave-induced scour around piles.  相似文献   

17.
A numerical model is developed to predict the onset of local scour below offshore pipelines in steady currents and waves. The scour is assumed to start when the pressure gradient underneath the pipeline exceeds the floatation gradient of the sediments. In this model, the water flow field above the bed is determined by solving the two-dimensional (2-D) Reynolds-averaged Navier–Stokes equations with a k-ω turbulence closure. The seepage flow below the seabed is calculated by solving the Darcy's law (Laplace's equation) with known pressure distribution along the common boundaries of the flow domains-seabed. The numerical method used for both the turbulent flow around the pipeline and Darcy's flow in the seabed is a fractional finite element method. The average pressure gradient along the buried pipe surface is employed in the evaluation of onset condition with a calibration coefficient. The numerical model is validated against experimental data available in literature. A unified onset condition for steady currents and waves is proposed. Influences of flow parameters, including water depth, embedment depth, boundary layer thickness, Reynolds number (Re) and Keuleagan–Carpenter (KC) number, on the pressure drop coefficient over the pipeline are studied systematically.  相似文献   

18.
ABSTRACT

The use of suction caissons can reduce the development costs of offshore wind energy and has broad application prospects. However scour around marine foundations is inevitable, it gravely affects the stability of marine engineering. Therefore, there is an urgent need to study the weakening effects of scour on suction caisson. In this study, the variation trends of remaining soil parameters (the effective unit weight and the peak effective friction angle) after scour are examined with consideration of the dilatancy and stress history of sandy silt. It is found that the parameters of shallow soil change considerably after scour, and the larger the scour depth, the greater is the change in the parameters. However, the deep soil is less affected. On the basis of these findings, scour effects on the ultimate moment capacity of suction caisson are studied. The ultimate moment capacity is found to greatly reduce under scour, and its calculated value is larger than the actual value when the effects of dilatancy and stress history are ignored. To simplify calculation, it is feasible to replace the ultimate moment capacity when both dilatancy and stress history are considered with that when only dilatancy is considered.  相似文献   

19.
Scour of the Seabed Under A Pipeline in Oscillating Flow   总被引:3,自引:0,他引:3  
PU  Qun 《中国海洋工程》2001,(1):129-138
The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon, which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the fixed pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths for different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.  相似文献   

20.
Abstract

Since the pull-out response of upwind caissons governs the design of multi-caisson foundations, it is worthwhile to study scour effect on the tensile capacity of suction caissons. The tensile capacity of suction caissons after scour is relevant to the scour depth and the pressure under the caisson lid: the tensile capacity decreases dramatically with increasing scour depth; the smaller the pressure, the stronger the weakening effect of scour. Moreover, the scour effect is investigated in two cases: ignoring stress history and considering stress history. The results show that tensile capacity after scour is larger when the stress history is considered, so ignoring the stress history leads to a conservative design. In order to quantitatively evaluate the effect of scour depth and pressure, an empirical formula for the tensile capacity of suction caissons after scour is proposed based on multiple regression analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号