首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The state of the art in marine geotechnology can best be defined with reference to what is known about soils on land. Differences between these two states of knowledge are the significant problems for the marine environment. Among the major problems addressed in this paper are (a) Sampling of soils, which involves much more serious disturbance than is considered acceptable on land. Disturbance results from several uniquely marine factors including total stress release and drilling mud overpressure, (b) Underconsolidation, or excess in situ pore pressure, caused by rapid rates of sedimentation, gas, leaks from an artesian pressure source, or cyclic loading. (c) Gas in sediments, which can cause an increase in the in situ pore pressure, hinders subsurface investigation, and is a major cause of sample disturbance. (d) The difficulty and necessity of in situ measurements. (e) The predominance of dynamic loading effects which can cause significant changes in soil behavior. A major difference between geotechnical engineering on land and in marine areas is the use of effective stress methods. Significant improvement in geotechnical engineering offshore can be achieved through the increased use of effective stress methods. Illustrations of these improvements are presented in this paper with particular reference to the problems of submarine slope stability.  相似文献   

2.
Abstract

A differential piezometer was used to monitor excess pore pressure in the soft clayey seafloor sediments of Block 28, South Pass, Mississippi delta, from September 1975 to March 1976. An ambient excess pore pressure of about 32 kPa was measured at a depth of 6.4 m below the mudline in a water depth of 19 m. Storm‐wave‐generated cyclic fluctuations of ± 4 kPa about the ambient were measured during Hurricane Eloise. Irregular, long‐period, small‐amplitude fluctuations in excess pore pressures persisted for 4 days following the storm. An effective stress analysis was made by using excess pore pressures; in situ field vane‐shear strength, t fv, measurements; and laboratory wet unit weights measured by Lehigh and NOAA. The effective stress of the SEA‐SWAB site soil was calculated to be zero to a depth of about 6 m, below which it increased to 3.5 kPa at a depth of 15 m. Values of c´ = 4.6 kPa, = 56°, and T FVvo(c/p) =0.1–0.2 were calculated, and it was concluded that these data do not represent the in situ condition of the soil because of the probability that the measured soil properties were affected by the presence of gas. However, it is clear that the soil is significantly underconsolidated.  相似文献   

3.
Experiments on three types of soil (d50=0.287, 0.057 and 0.034 mm) with pipeline(D=4 cm) either half buried or resting on the seabed under regular wave or combined with current actions were conducted in a large wave flume to investigate characteristics of soil responses. The pore pressures were measured through the soil depth and across the pipeline. When pipeline is present the measured pore pressures in sandy soil nearby the pipeline deviate considerably from that predicted by the poro-elasticity theory. The buried pipeline seems to provide a degree of resistance to soil liquefaction in the two finer soil seabeds. In the silt bed, a negative power relationship was found between maximum values of excess pore pressure pmax and test intervals under the same wave conditions due to soil densification and dissipation of the pore pressure. In the case of wave combined with current, pore pressures in sandy soil show slightly decrease with time, whereas in silt soil, the current causes an increase in the excess pore pressure build-up, especially at the deeper depth. Comparing liquefaction depth with scour depth underneath the pipeline indicates that the occurrence of liquefaction is accompanied with larger scour depth under the same pipeline-bed configuration.  相似文献   

4.
Abstract

The behavior of gas‐laden, soft submarine soils subjected to changes in mean normal and shearing stresses is discussed. Information developed for partially saturated soils is extended to soft sediments. Calculations indicating that gas‐laden submarine soils generally have degrees of saturation in situ that exceed ~ 90% are presented. Therefore, it is suggested that insignificant error is introduced in predicting the effective stresses of soft sediments using the standard effective stress equation and neglecting the pore‐gas pressure.

The presence of gas is shown to permit volume changes of soft sediments under wave loadings. The compressibility of the gaswater pore fluid is quantified. The pore‐pressure response, related to the ratio of the compressibility of the pore fluid and soil structure, is shown to be similar to that of fully saturated soils. The relevance of “undrained”; shipboard tests to the prediction of slope stability is discussed. It is concluded that the presence of gas leads to undrained strengths, as measured on recovered samples, which are lower than those that occur in situ. The use of these measured strengths in stability calculations leads to conservative predictions of submarine slope stability.  相似文献   

5.
Abstract

Blast response of submerged pipelines has been a research focus in recent years. In this article, a three-dimensional numerical model is established to investigate dynamic response of pipelines due to underwater explosion. The up approximation is integrated into finite element method (FEM) to simulate pore water effect in the seabed. Numerical continuity between hydraulic pressure in the flow field and pore pressure in the marine sediment is guaranteed to realize the blast response of submerged pipelines in ocean environment. Both fluid–structure interaction (FSI) and pipeline–seabed interaction (PSI) have been considered in the proposed model simultaneously. A comprehensive parametric study is carried out after validation of the present model with test data from underground explosion and underwater explosion, respectively. The effect of embedment depth, TNT equivalent, stand-off distance, pipeline diameter, and pipeline thickness to blast response of the submerged pipelines is investigated based on numerical results. Variation of deformation patterns and stress distribution of the pipeline with various installation and structure parameters has been illustrated and discussed to facilitate engineering practice.  相似文献   

6.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α=6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/po values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α = 6°, cu /po =0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (c u /p o=0.30–0.50) is attributed to large horizontal accelerations(k=12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu /po = 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

7.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α = 6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐ drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/p o values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α=6°, cu/p o=0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (cu/p o=0.30–0.50) is attributed to large horizontal accelerations (k= 12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu/p o= 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

8.
Cement and lime are widely employed in soil and sediment treatment for an improvement of geotechnical properties, such as an increase in mechanical strength which enables beneficial use in various geotechnical applications. In this study, fine organic-rich dredged harbour sediments of 120% relative water content were treated with dry cement at contents varying between 2% and 10% of bulk sediment wet weight. Tests based on assessments of one-dimensional compression and Atterberg limits were performed on untreated and cement-treated sediments for various curing periods, as well as grain-size, SEM and X-ray diffraction analyses. The results confirm that increasing the cement content improves the geotechnical properties of these harbour sediments. Already in the early phase of curing (first 3 days of curing), particle size increases while sediment plasticity decreases. Changes in the compressibility behaviour include an increase in apparent preconsolidation pressure, in the compression index C c and in the primary consolidation coefficient C v, and a decrease in the secondary compression index . This means that the new materials are characterized by a behaviour intermediate between that of fine and that of coarser soils.  相似文献   

9.
本文建立了半透膜渗透装置(semi-permeable membrane device,SPMD)富集-超声萃取-凝胶渗透色谱净化-气相色谱法测定沉积物间隙水中多氯联苯(PCBs)的方法。比较了有机溶剂透析法与超声萃取法从膜袋内提取PCBs的回收率,发现超声萃取法在节省时间和溶剂方面有明显优势。应用凝胶渗透色谱分离与净化SPMD提取物,收集11—17min的流出液能达到最佳分离效果。基于此方法测定了大连湾沉积物间隙水中自由溶解态PCBs的含量(C_(W-SPMD)),同时又分析了沉积物中PCBs的总量(C_(SED))、间隙水中PCBs的含量(有机碳含量校正法,C_(W-SED))和间隙水中PCBs的总含量(离心法,C_(PW))。结果表明,C_(PW)值显著高于C_(W-SED)和C_(W-SPMD)值。因此,考虑到生物可利用性,无论采用沉积物中或者间隙水中的PCBs总量进行污染物生态风险评价均会造成风险被高估,建议采用间隙水中可溶解态含量。  相似文献   

10.
Abstract

The electrokinetic treatments on high natural moisture content, large compressibility, and low strength dredged marine soil are regarded as an innovative method, but it has not been widely applied due to the difference between theory predictions and realities. To minimize the difference which is resulted from the electric permeability coefficient variations due to pore water drainage and the degree of saturation drops during the electrokinetic treatment of soils, several one-dimensional indoor experiments were conducted with single kaolin clay and natural soft clay. The test results indicate that the electric permeability values conform to the predicted value of Helmholtz–Smoluchowski (H-S) theory under saturated conditions. The permeability for unsaturated soils can be described with relative electric permeability, that is, ke,rel=a(Sr)b. The ranges of fitting parameters are 0.8–1.2 for a and 3–9 for b. The fitting parameters are dependent on the soil type, electric potential gradient, and pore size distribution and so on. The smaller the soil pore size is the more sensitive the permeability coefficient is to the degree of saturation.  相似文献   

11.
Abstract

The possibility of seafloor failure under external loadings on a gently sloping continental shelf is controlled, to a large extent, by the geotechnical characters of subbottom sediments (e.g., shear strength, compressibility, and liquefaction potential) and structural factors (e.g., sedimentary stratification). By means of undis‐turbing coring, in‐situ acoustic measurement, and subbottom profiling, the authors conducted an investigation into the seafloor instabilities and possibilities of sediment slope failure within the continental shelf off the Pearl River mouth, which is one of the most important areas for offshore development in the northern South China Sea. Based on in‐situ and laboratory measurements and tests for sediment physical properties, static and dynamic behavior, and acoustic characteristics, the analyses indicate: (1) subbottom sediments that originated from terrigenous clay during the Pleistocene are compact and overconsolidated, and the mean sound velocity in such sediments is relatively high; (2) the maximum vertical bearing capacity of subbottom sediments is efficiently conservative on the safe side for dead loads of light structures, and the trench walls are stable enough while trenching to a depth of about 2 m below the seafloor under still water; and (3) it is quite improbable that the subbottom sediments liquefy under earthquake (M ≤ 6) or storm wave loading.  相似文献   

12.
Abstract

The excess pore pressure accumulation is a key factor when estimating the formation mechanism of large pockmarks, as it determines the liquefaction potential of marine sediments due to water waves. The governing equations for excess pore pressure may have different forms for various types of sediments and then shall reflect the cyclic plasticity of the soil. For water waves propagating over a porous seabed, the liquefaction area induced by waves is generally progressive, which indicates that the liquefaction area will move forward following the wave train. Therefore, the excess pore pressure accumulation can be used to explain the occurrence of the large pockmarks, but the dimension of the pockmark may be related to the heterogeneity of sediment or the wave properties affected by the topography in the subaqueous Yellow River Delta.  相似文献   

13.
Unfluidized soil responses of a silty seabed to monochromatic waves   总被引:3,自引:0,他引:3  
A flume experimental study on unfluidized responses of a silty bed (d50=0.05 mm) to monochromatic water waves had shown that pore pressure variations were generally poro-elastic in the bulk body and displayed two other characteristic features not found in previous laboratory sand tests. They were an immediately fluidized thin surface layer induced by wave stresses inside the seabed's boundary layer and a porous skeleton with internally suspended sediments due to channeled flow motions. The analyses verified that on soils beneath the measurement points, both features resulted in relatively small-step pore pressure build-ups, while the former played a primary role. Besides, laboratory observations confirmed that there were some near-bed sediment suspensions during wave actions resulting in a flat bed form over a silty bed compared to small-scaled ripples over a sandy bed with no clearly identified suspended sediments. These characteristic silt responses suggest that sediment transport is critically associated with the internal soil responses and some field-observed sediment suspensions near above sandy beaches can further be approached in the laboratory by utilizing fine-grained soils.  相似文献   

14.
Abstract

Compression behavior of sediments is crucial to geological engineering applications for ascertaining the deformation characteristics of the particular depositional environments. Unfortunately, obtaining the geotechnical parameters required to assess the compression behavior of sediments can be a costly and time-consuming undertaking. This study developed a general prediction equation that simulates the compression behavior of sediments. This developed equation is an exponential decline model that relates an increase of the shear-wave velocity to an increase of the mean effective stress. Consequently, the decrease of void ratio is presented as a continuous function of the shear-wave velocity. For this research, laboratory-derived sediment samples created to mimic actual sediments were isotopically consolidated during a consolidated undrained triaxial compression tests. The samples were prepared in the laboratory by mixing different percentages of fines and controlling the ratio of clay-to-silt fractions. Shear-wave velocity tests were performed during this consolidation testing using bender elements. The experimental constants needed for the prediction equation were well correlated to the depositional factors specifically characterized by percent fines, silt percent, and liquid limit that define better complexity of depositional processes.  相似文献   

15.
The wave pressure and uplift force due to random waves on a submarine pipeline (resting on bed, partially buried and fully buried) in clayey soil are measured. The influence of various parameters viz., wave period, wave height, water depth, burial depth and consistency index of the soil on wave pressures around and uplift force on the submarine pipeline was investigated. The wave pressures were measured at three locations around the submarine pipeline (each at 120° to the adjacent one). It is found that the wave pressure and uplift force spectrum at high consistency index of the soil is smaller compared to that of low consistency index. Just burying the pipeline (e/D=1.0) in clayey soil reduces the uplift force to less than 60% of the force experienced by a pipeline resting on the seabed (e/D=0.0) for Ic=0.33.  相似文献   

16.
Sediment core samples collected during geotechnical surveys along the West Coast of India in the near shore areas of Arabian Sea have generated data on the geotechnical index properties of clayey sediments up to nearly 5 m depth below seafloor. A comparative study of three sectors within themselves is attempted before carrying out a final evaluation between the sectors. Cohesive clayey sediments of Gujarat sector are comparable though widely variant in a few aspects; in the Maharashtra-Goa-Karnataka sector though, plasticity levels and clay type vary, and activity and consistency levels are quite similar. Though broadly comparable, the clayey sediments of Kerala-Tamilnadu sector have quite diverse characteristics that fail to conform to any particular pattern as each area has an exclusive set of geotechnical properties.  相似文献   

17.
Abstract

The stability of trenches for buried submarine pipelines (TBSPs) during excavation and/or prior to backfilling has not received enough attention in the literature. In this study, the undrained stability of TBSPs in horizontal and inclined seabeds with shear strengths increasing linearly with depth is investigated using the lower and upper bound finite element limit analysis (FELA). The surcharge due to excavated soils and trenching machines is reasonably considered. Extensive parametric studies are performed on the trench slope angle β, normalized width of trenching machine L/H, dimensionless strength gradient Hk/su0 and the volume ratio R (for inclined seabed only) of the excavated soil stacked on the upside and downside of trenches. The actual results are accurately bracketed by the computed upper and lower bound solutions. For the trench with horizontal seabeds, the maximum stability can be obtained under β?=?70°–80°. For inclined seabeds, the global stability of TBSPs roughly reaches peak value for different combinations of L/H and β when R?=?0.15–0.3.  相似文献   

18.
Residual undrained shear strength, s u_res , is an important parameter for analyzing the response of structures buried within potentially unstable soil mass. A framework for estimating s u_res of fine grained sediments from gravity corer penetration has been developed considering viscous drag during free fall of the corer through seawater and cohesive energy loss during sediment penetration. The procedure was used to estimate s u_res using data from a submarine geotechnical investigation in western Canada. Comparison of the results with alternative estimates of s u_res from miniature torvane tests on the gravity core samples and CPTs performed nearby reveals a reasonable agreement.  相似文献   

19.
Abstract

In September 1975, a differential piezometer probe was successfully implanted in the soft seafloor sediments of Block 28, South Pass, Mississippi Delta. The probe sensor is located approximately 6.4 m below the mudline in a water depth of 19 m, and has essentially continuously monitored excess pore pressure (the difference between sediment pore pressure and hydrostatic pressure at that depth) since installation. Excess pore pressure will be monitored until March 1976, when the probe will be recovered.

Immediately after deployment, an excess pore pressure of 54 kPa was recorded. An ambient excess pore pressure of approximately 32 kPa remained after dissipation of that developed during probe installation. Because of the possible presence of gas in the sediments in this area, it is not known with certainty whether the measured excess pressure is pore water pressure, pore gas pressure, or some combination of the two. An excess pore pressure of about 32 ±4 kPa was monitored during Hurricane Eloise and subsequent storms. The exact magnitude and time distribution of these pressure fluctuations is presently being evaluated.  相似文献   

20.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号