首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Further information on the macroseismic field in the Balkan area   总被引:1,自引:0,他引:1  
Papazachos and Papaioannou (1997) (called PP97 hereinafter) studied the macroseismic field in the Balkan area (Greece, Albania, former Yugoslavia, Bulgaria and western Turkey) with the purpose of deriving attenuation and scaling relations useful for seismic hazard assessment and study of historical earthquakes. In his comment, Trifunac suggests that our analysis might exhibit certain bias for all countries except Greece due to problems mainly associated with the database (completeness, etc.), conversion of local intensity scales used in the Balkan countries, as well as to the local variations of the attenuation relation due to the variation of the geotectonic environment in this area. Specifically, his most important comments can be summarized as follows: a) The large participation of Greek data probably biased the scaling relations proposed in the study. b) The conversion relations used between local macroseismic scales are less accurate than their proposed such relations. c) The variation of attenuation (geometrical and anelastic) in different regions of the study area is important and local relations (instead of the proposed single relation) should be determined for seismic hazard assessment. In the following, we study in detail each of these possible bias sources. Additional work on the macroseismic field of the Balkan area shows that none of the previously described factors, suggested by Trifunac, introduces bias in the results presented by PP97. Specifically, it is shown that the database used by PP97 fulfills the basic requirements for a reliable determinations of attenuation and scaling relations proper for seismic hazard assessment in all five countries of this area. Evidence is presented that no strong geographical variation of the attenuation of macroseismic intensities of shallow earthquakes is observed. Relations between local version of intensity scales suggested by Shebalin et al. (1974) are shown to be reliable. Finally, it is demonstrated that national practices for estimation of macroseismic intensities may affect the results of seismic hazard assessment but proper formulation can be applied (PP97) which allows to take into account such differences in national practices. This formulation allows also to introduce and correct for anisotropic radiation at the seismic source as well as the incorporation of site effects.  相似文献   

2.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

3.
A procedure is proposed for the reconfiguration of the macroseismic planes relative to earthquakes that, being characterized by a reduced number of points of observed intensity due to a lack of information, or having the epicenter very close to the coastline, are characterized by an incomplete distribution of observed intensity levels. The design of a plurality of virtual areas, through which a distribution of intensity consistent with an anisotropic model of attenuation is depicted, allows a reliable determination of macroseismic parameters of the same seismic event.  相似文献   

4.
The anisotropic modelling of intensity distribution, affected by the construction of macroseismic planes, allows an analysis of the influence of each point of observed intensity on the analytical determination of epicenter and of the principal attenuation directions. Such a procedure is a vital aid in the cases in which the observed intensity points, that, for location or joined intensity level, are not consistent with an anisotropic model of intensity attenuation. A suitable filtering on intensity levels associated with the points of the intensity map, for a better modelling of observed intensity distribution, is proposed with the aim of a better seismic hazard evaluation.  相似文献   

5.
A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.  相似文献   

6.
Estimates of site seismicity rates using ill-defined macroseismic data   总被引:2,自引:0,他引:2  
A new approach to the problem of site seismic hazard analysis is proposed, based on intensity data affected by uncertainties. This approach takes into account the ordinal and discrete character of intensities, trying to avoid misleading results due to the assumption that intensity can be treated as a real number (continuous distribution estimators, attenuation relationships, etc.). The proposed formulation is based on the use of a distribution function describing, for each earthquake, the probability that site seismic effects can be described by each possible intensity value. In order to obtain site hazard estimates where local data are lacking, the dependence of this distribution function with the distance from the macroseismic epicenter and with epicentral intensity is examined. A methodology has been developed for the purpose of combining such probabilities and estimating site seismicity rates which takes into account the effect of uncertainties involved in this kind of analysis. An application of this approach is described and discussed.  相似文献   

7.
A method is suggested for the analysis of macroseismic intensity data in order to accurately determine an average attenuation structure of the upper part of the crust in an area. The method is based on a model which assumes that the observed intensities depend on source properties (radiation pattern, size, focal depth), geometrical spreading and anelastic attenuation. The method is applied to 13,008 intensity values, observed in corresponding sites of Greece and grouped (in 4228 groups), according to their spatial clustering in order to diminish observational errors and site effects. An average intensity attenuation coefficient,c=–0.0039±0.0016, corresponding to a quality factor, Q=350±140, is determined for the upper 20 km of the crust in this area. This value is relatively low, in good agreement with the relatively high heat flow and high seismic activity of this area. A byproduct of the present study is the determination, for each earthquake, of a macroseismic focal depth and of a macroseismic size, which is strongly correlatted with both the earthquake's magnitude and its seismic moment determined by independent methods.  相似文献   

8.
The points with normal, anomalously low, and anomalously high shaking intensities are recognized in the spatial distribution of macroseismic effects from the 1991 Racha earthquake, Greater Caucasus. Distribution of these points in the epicentral area is not random. Comparison between this distribution and the results of local tomography reveals that seismic wave velocities do not increase in the upper layers (from 0 to 3 km) beneath the points with anomalously high intensity, while a sharp increase in velocity is observed in the depth interval from 6 to 9 km. An original method of b-value mapping is suggested. Application of the method demonstrates that anomalously low intensities correlate to high b-values. This likely reflects higher intensity attenuation associated with higher b-value.  相似文献   

9.
In many countries such as Spain earthquake databases still mainly comprise macroseismic data from felt effects. The full exploit of this information is of basic importance for seismic risk assessment and emergency planning, given the strict link between macroseismic intensity and damage. A probabilistic procedure specifically developed to handle macroseismic data, mostly relying on site information and seismogenic-source free, has been applied to evaluate seismic hazard in SE-Spain (Alicante-Murcia region). Present seismicity is moderate-low with largest magnitudes slightly over Mw5.0. The historical record includes very destructive earthquakes, maximum EMS98 intensities reaching IX–X and X in the nineteenth century (e.g., Torrevieja 1829 earthquake). Very recently, two events in the area on 11 May 2011 (Mw4.5, Mw5.2) killed nine people, injured 300, and produced important damage in the city of Lorca. Regional hazard maps for the area together with specific hazard curves at selected localities are obtained. Results are compared with the maximum observed intensities in the period 1300–2012, and with the values in the seismic hazard map from the Spanish Building Code in force. In general, the maximum felt intensity values are closer to the hazard values calculated for 2 % probability of exceedance in 50 years, using felt and expected intensity. The intensity-based probabilistic hazard maps obtained through the applied approach reduce the inherent smoothing of those based on standard probabilistic seismic hazard assessment approaches for the region, allowing identifying possible over- or sub-estimates of site hazard values, providing very valuable information for risk reduction strategies or for future updates of the building code hazard maps.  相似文献   

10.
The aim of this paper is to provide a complete and reliable macroseismic knowledge of the events that stroke a large area in Central Italy on 7 and 11 May 1984. Previous studies, together with original accounts integrated with new and unpublished information, have been gathered and examined in order to re-evaluate macroseismic intensities in terms of the European Macroseismic Scale (EMS98). New intensity maps have been compiled; the total number of localities with available information for both the shocks increases from 1254 of the previous study to 1576. On the basis of the new dataset, the macroseismic magnitude of the first shock is MW 5.6 which is lower than the previous macroseismic computation (MW 5.7). Moreover, the topic of assessing macroseismic intensity in the presence of multiple shocks has been also investigated, proposing an unconventional approach to presenting the macroseismic data: an overall picture of the cumulative effects produced by all the seismic sequence is given to support a partial but faithful reconstruction of the second shock. This approach is inspired by the common experience in interpreting historical seismic sequences and gives a picture of the impact of the 1984 events on the territory.  相似文献   

11.
An instrumental validation is attempted of an innovative approach devoted to the quick individuation, from macroseismic data, of site amplification phenomena able to significantly modify seismic hazard levels expected on the basis of average propagation effects only. According to this methodology, two evaluations of hazard are performed at each investigated locality: the former, obtained by epicentral intensity data ‘reduced’ at the site through a probabilistic attenuation function and, the latter, computed by integrating such data with seismic effects actually observed at the site during past earthquakes. The comparison, for each locality, between these two hazard estimates allow to orientate the identification of those sites where local amplifications of earthquake ground motion could be significant. In order to check such methodology, indications obtained in this way from macroseismic data are compared with the estimates of transfer functions performed through the HVSR technique applied to microtremors. Results concerning municipalities located in a seismic area of Northern Italy indicate a good agreement between macroseismic and instrumental estimates.  相似文献   

12.
In the framework of the 2004 reference seismic hazard map of Italy the amplitude of the strong-motion (expressed in terms of Peak Horizontal Acceleration with 10% probability of non-exceedence in 50 years, referred to average hard ground conditions) was computed using different predictive relationships. Equations derived in Italy and in Europe from strong-motion data, as well as a set of weak and strong-motion based empirical predictive relationships were employed in a logic tree procedure, in order to capture the epistemic uncertainty affecting ground-motion attenuation. This article describes the adjustments and conversions required to eliminate the incompatibilities amongst the relations. Particularly significant are distance conversions and style-of-faulting adjustments, as well as the problems related to the use of regional relations, such as the selection of a reference depth, the quantification of random variability and the strong-motion prediction. Moreover, a regional attenuation relationship specific for volcanic areas was also employed, allowing a more realistic evaluation of seismic hazard, as confirmed by the attenuation of macroseismic intensities.  相似文献   

13.
Macroseismic intensity, a useful measure of earthquake effects, is still applied in a wide range of seismological applications like seismic hazard assessments, attenuation relationships, etc. Isoseismals represent the spatial distribution of macroseismic intensities, and their shapes depend on source properties, lithosphere structures, tectonic line orientations, site geology, and topography. The applications ask for both the higher number of isoseismal maps, and their standardization and homogenization. The point kriging gridding method for an automatic computer drawing of isoseismal maps was delivered. Smoothing rates and numerical parameters used in the kriging algorithm were tested on macroseismic data of Greek earthquakes representing different tectonic and geomorphological regimes. The optimum kriging default option was defined. Its application for four Greek earthquakes is presented and discussed from the viewpoint of a broad use in recent macroseismology. The online version of the original article can be found at .  相似文献   

14.
Isoseismal maps drawing by the kriging method   总被引:1,自引:0,他引:1  
Macroseismic intensity, a useful measure of earthquake effects, is still applied in a wide range of seismological applications like seismic hazard assessments, attenuation relationships, etc. Isoseismals represent the spatial distribution of macroseismic intensities and their shapes depend on source properties, lithosphere structures, tectonic line orientations, site geology and topography. The applications ask for both the higher number of isoseismal maps and their standardization and homogenization. The point kriging gridding method for an automatic computer drawing of isoseismal maps was delivered. Smoothing rates and numerical parameters used in the kriging algorithm were tested on macroseismic data of Greek earthquakes representing different tectonic and geomorphological regimes. The optimum kriging default option was defined. Its application for four Greek earthquakes is presented and discussed from viewpoint of a broad use in recent macroseismology. An erratum to this article can be found at  相似文献   

15.
--A study of the intensity distribution of the earthquake of December 5th 1456, which affected a large area of central and southern Italy was carried out, verifying, through a recently proposed methodology, the two hypotheses assumed by different authors for one single seismic event and three distinct and close ones. This methodology is based on a vectorial modelling of the macroseismic intensity distribution which aims at determining the epicentre and the principal (minimum and maximum) attenuation directions.¶The study was structured, considering each of the two assumed hypotheses, in a set of tests obtained for the macroseismic field and the intensity map, by analysing different configurations of the observed intensity distribution.¶The results obtained are in agreement with the hypothesis of the time coexistence of three distinct seismic events, for which the calculated epicentres and the principal attenuation directions are compatible with the observed intensity distribution and with the tectonic trend of the Apennine region, respectively.  相似文献   

16.
Seismic intensity, measured through the Mercalli–Cancani–Sieberg (MCS) scale, provides an assessment of ground shaking level deduced from building damages, any natural environment changes and from any observed effects or feelings. Generally, moving away from the earthquake epicentre, the effects are lower but intensities may vary in space, as there could be areas that amplify or reduce the shaking depending on the earthquake source geometry, geological features and local factors. Currently, the Istituto Nazionale di Geofisica e Vulcanologia analyzes, for each seismic event, intensity data collected through the online macroseismic questionnaire available at the web-page www.haisentitoilterremoto.it. Questionnaire responses are aggregated at the municipality level and analyzed to obtain an intensity defined on an ordinal categorical scale. The main aim of this work is to model macroseismic attenuation and obtain an intensity prediction equation which describes the decay of macroseismic intensity as a function of the magnitude and distance from the hypocentre. To do this we employ an ordered probit model, assuming that the intensity response variable is related through the link probit function to some predictors. Differently from what it is commonly done in the macroseismic literature, this approach takes properly into account the qualitative and ordinal nature of the macroseismic intensity as defined on the MCS scale. Using Markov chain Monte Carlo methods, we estimate the posterior probability of the intensity at each site. Moreover, by comparing observed and estimated intensities we are able to detect anomalous areas in terms of residuals. This kind of information can be useful for a better assessment of seismic risk and for promoting effective policies to reduce major damages.  相似文献   

17.
The main objective of the present study is to evaluate seismic attenuation relationships for the Campanian area (southern Italy) using the felt intensity report data obtained from comprehensive historical databases (DOM 4.1). We focused our attention on the Campania region because it is characterized by a high seismic hazard and risk, particularly in the Naples area and its suburbs. In order to derive an attenuation relationship for the area, we fitted the observed data by using several functions. We found that a linear plus logarithmic model gives the best fits for the data in the Campanian region. Most of the attenuation relationships proposed up to now for the Italian Peninsula have an isotropic behavior and do not always properly describe the macroseismic attenuation. Therefore, in order to check the possible dependence of the attenuation on the azimuth of the seismic rays, we divided our data set in octants and performed for each of them the same analysis we carried out for the whole data set. The obtained results differ from octant to octant and the differences, besides being associated with the source effects, could be interpreted as probably due to the existence of lateral variations in the lithological and physical features of the crust at different depths, which could affect the patterns of attenuation.  相似文献   

18.
The earthquake risk on Romania is one of the highest in Europe, and seismic hazard for almost half of the territory of Romania is determined by the Vrancea seismic region, which is situated beneath the southern Carpathian Arc. The region is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depth from 70 to 160 km. Besides the Vrancea area, several zones of shallow seismicity located within and outside the Romanian territory are considered as seismically dangerous. We present the results of probabilistic seismic hazard analysis, which implemented the “logic tree” approach, and which considered both the intermediate-depth and the shallow seismicity. Various available models of seismicity and ground-motion attenuation were used as the alternative variants. Seismic hazard in terms of macroseismic intensities, peak ground acceleration, and response spectra was evaluated for various return periods. Sensitivity study was performed to analyze the impact of variation of input parameters on the hazard results. The uncertainty on hazard estimates may be reduced by better understanding of parameters of the Vrancea source zone and the zones of crustal seismicity. Reduction of uncertainty associated with the ground-motion models is also very important issue for Romania.  相似文献   

19.
The macroseismic field of the Balkan area   总被引:1,自引:0,他引:1  
A catalogue of 356 macroseimic maps which are available for the Balkan area was compiled, including information on the source parameters of the corresponding earthquakes, the macroseismic parameters of their strength and their macroseismic field. The data analysis of this catalogue yields new empirical relations for attenuation, which can be applied for the calibration of historical events, modelling of isoseismals and seismic hazard assessment. An appropriate analysis allowed the separation and estimation of the average values of the geometrical spreading, n, and anelastic attenuation factor, c, for the examined area which were found equal to –3.227 ± 0.112 and –0.0033 ± 0.0010. Scaling relations for the focal macroseismic intensity, If, and the epicentral intensity I0, versus the earthquake moment magnitude were also determined for each Balkan country. A gradual decrease of the order of 0.5 to 1 intensity unit is demonstrated for recent (after 1970) earthquakes in Greece. Finally the depths of the examined earthquakes as they robustly determined (error <5 km) on the basis of macroseismic data were found to have small values ( 10 km). However large magnitude earthquakes show higher focal depths ( 25 km), in accordance with an increase of the seismic fault dimensions for such events.  相似文献   

20.
A new wave equation is derived for modelling viscoacoustic wave propagation in transversely isotropic media under acoustic transverse isotropy approximation. The formulas expressed by fractional Laplacian operators can well model the constant-Q (i.e. frequency-independent quality factor) attenuation, anisotropic attenuation, decoupled amplitude loss and velocity dispersion behaviours. The proposed viscoacoustic anisotropic equation can keep consistent velocity and attenuation anisotropy effects with that of qP-wave in the constant-Q viscoelastic anisotropic theory. For numerical simulations, the staggered-grid pseudo-spectral method is implemented to solve the velocity–stress formulation of wave equation in the time domain. The constant fractional-order Laplacian approximation method is used to cope with spatial variable-order fractional Laplacians for efficient modelling in heterogeneous velocity and Q media. Simulation results for a homogeneous model show the decoupling of velocity dispersion and amplitude loss effects of the constant-Q equation, and illustrate the influence of anisotropic attenuation on seismic wavefields. The modelling example of a layered model illustrates the accuracy of the constant fractional-order Laplacian approximation method. Finally, the Hess vertical transversely isotropic model is used to validate the applicability of the formulation and algorithm for heterogeneous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号