首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

2.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

3.
We report the detection of a 5.8 Å– 104 s periodicity in the 0.5–10 keV X-ray light curve of the Seyfert galaxy IRAS 18325–5926, obtained from a 5-d ASCA observation. Nearly nine cycles of the periodic variation are seen; it shows no strong energy dependence and has an amplitude of about 15 per cent. Unlike most other well-studied Seyfert galaxies, there is no evidence for strong power-law red noise in the X-ray power spectrum of IRAS 18325–5926. Scaling from the QPOs found in Galactic black hole candidates suggests that the mass of the black hole in IRAS 18325–5926 is ∼ 6 Å– 106–4 Å– 107 M.  相似文献   

4.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

5.
We present new X-ray and H  I 21-cm data on the poor cluster of galaxies Abell 3581. The ASCA spectrum requires a low temperature, has a strong requirement for excess absorption and shows evidence for multi-temperature components. The ROSAT HRI image shows the strongly peaked emission indicative of a cooling flow. Despite the low temperature (∼ 1.5–2.0 keV) and low luminosity (∼ 2 × 1042 erg s−1 in the 2–10 keV band), Abell 3581 has a mass deposition rate ∼ 80 M⊙ yr−1 which is larger than found for other nearby low-luminosity objects. VLA observations in the 21-cm band set velocity width and spin temperature dependent limits on the column density of atomic hydrogen.  相似文献   

6.
We present a Chandra observation of the powerful radio galaxy 3C 294 showing clear evidence for a surrounding intracluster medium. At a redshift of 1.786 this is the most distant cluster of galaxies yet detected in X-rays. The radio core is detected as a point source, which has a spectrum consistent with a heavily absorbed power law, implying an intrinsic 2–10 keV luminosity of ∼1045 erg s−1. A small excess of emission is associated with the southern radio hotspots. The soft, diffuse emission from the intracluster medium is centred on the radio source. It has an hourglass shape in the north–south direction, extending to radii of at least 100 kpc, well beyond the radio source. The X-ray spectrum of this extended component is fitted by a thermal model with temperature ∼5 keV, or by gas cooling from above 7 keV at rates of ∼ 400–700 M yr−1. The rest-frame 0.3–10 keV luminosity of the cluster is ∼ 4.5×1044 erg s−1. The existence of such a cluster is consistent with a low-density universe.  相似文献   

7.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

8.
We present XMM data for the supercluster A901/2, at   z ∼ 0.17  , which is combined with deep imaging and 17-band photometric redshifts (from the COMBO-17 survey), two degree field (2dF) spectra and Spitzer 24 μm data, to identify active galactic nuclei (AGN) in the supercluster. The 90 ksec XMM image contains 139 point sources, of which 11 are identified as supercluster AGN with   L X(0.5−7.5 keV) > 1.7 × 1041 erg cm−2 s−1  . The host galaxies have   M R < −20  and only two of eight sources with spectra could have been identified as AGN by the detected optical emission lines. Using a large sample of 795 supercluster galaxies, we define control samples of massive galaxies with no detected AGN. The local environments of the AGN and control samples differ at ≳98 per cent significance. The AGN host galaxies lie predominantly in areas of moderate projected galaxy density and with more local blue galaxies than the control sample, with the exception of one very bright type I AGN very near the centre of a cluster. These environments are similar to, but not limited to, cluster outskirts and blue groups. Despite the large number of potential host galaxies, no AGN are found in regions with the highest galaxy density (excluding some cluster cores where emission from the intra-cluster medium obscures moderate luminosity AGN). AGN are also absent from the areas with lowest galaxy density. We conclude that the prevalence of cluster AGN is linked to their environment.  相似文献   

9.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

10.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

11.
We present analyses of the ASCA X-ray spectra of two Seyfert galaxies, Tololo 0109383 and ESO 138G1. In both cases, spectral fitting reveals two statistically acceptable continuum models: Compton reflection and partial covering. Both spectra have strong iron K lines, with equivalent widths greater than 1.5 keV. These large equivalent widths are suggestive of heavier obscuration than that directly indicated by the partial-covering models (  21023 cm-2),  with the actual column densities being 'Compton-thick' (i.e.   N H1.51024 cm-2).  We use the hard X-ray/[O  iii ] flux correlation for Seyferts and data from the literature to provide additional support for this hypothesis. Since Tololo 0109383 is known to have optical type 1 characteristics such as broad Balmer line components and Fe  ii emission, this result marks it as a notable object.  相似文献   

12.
The large-scale structure around the Ophiuchus cluster of galaxies in the vicinity of the Galactic Centre ( l =05, b =95, cz =8500 km s−1) is investigated on the basis of a galaxy survey and spectroscopic observations made for a 12°×17° area. The galaxy survey was performed using six ESO/SERC Sky Survey Atlas films, and 4021 galaxies were detected in total. Recession velocities were newly obtained for 179 galaxies to make the total number of galaxies in the survey area with known velocities 219.
In the distribution of bright galaxies, we identified seven new clumps of galaxies. Comparing the surface number density of bright galaxies with the Galactic extinction, which is estimated from the 100‐μm flux density in the IRAS Sky Survey Atlas, we demonstrate that the seven clumps are not spurious as a result of the inhomogeneity of the Galactic extinction. Among the seven clumps, two are found to be clusters and four to be groups on the basis of the histogram of recession velocities and the number of member galaxies. The Ophiuchus cluster, two newly identified clusters, and four groups are all concentrated at 9000 km s−1. Field galaxies are also distributed centred at 8500 km s−1. Hence field galaxies occupy a common three-dimensional region with galaxies in the clusters and groups, and altogether they form a large-scale structure of supercluster size. As opposed to the overdensity in the supercluster region, the mean number density of galaxies in the velocity range 0–5000 km s−1 is only 25 per cent of the mean number density of the Universe, comparable with the density of the well-known Böotes void. Hence this nearby three-dimensional region in Ophiuchus is a void of galaxies also.  相似文献   

13.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

14.
We present an X-ray spectroscopic study of the prototype far-infrared galaxy NGC 6240 from ASCA . The soft X-ray spectrum (below 2 keV) shows clear signatures of thermal emission well described by a multitemperature optically thin plasma, which probably originates in a powerful starburst. Strong hard X-ray emission is also detected with ASCA and its spectrum above 3 keV is extremely flat with a prominent iron K line complex, very similar to that seen in the Seyfert 2 galaxy NGC 1068 but about an order of magnitude more luminous ( L 3−10keV ≈ 1.4 × 1042 erg s−1). The hard X-ray spectrum indicates that only reflected X-rays of an active galactic nucleus (AGN) buried in a heavy obscuration ( N H > 2 × 1024 cm−2) are visible. This is evidence for an AGN in NGC 6240, emitting possibly at a quasar luminosity (∼ 1045 erg s−1), and suggests its significant contribution to the far-infrared luminosity.  相似文献   

15.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

16.
We present results from spectral analysis of ASCA data on the strong Fe  ii narrow-line Seyfert 1 galaxy Mrk 507. This galaxy was found to have an exceptionally flat ROSAT spectrum among the narrow-line Seyfert 1 galaxies (NLS1s) studied by Boller, Brandt & Fink. The ASCA spectrum, however, shows a clear absorption feature in the energy band below 2 keV, which partly accounts for the flat spectrum observed with the ROSAT Position Sensitive Proportional Counter (PSPC). Such absorption is rarely observed in other NLS1s. The absorption is mainly the result of cold (neutral or slightly ionized) gas with a column density of (2–3) × 1021 cm−2. A reanalysis of the PSPC data shows that an extrapolation of the best-fitting model for the ASCA spectrum underpredicts the X-ray emission observed with the PSPC below 0.4 keV if the absorber is neutral (which indicates that the absorber is slightly ionized), covers only part of the central source, or there is extra soft thermal emission from an extended region. There is also evidence that the X-ray absorption is complex; an additional edge feature marginally detected at 0.84 keV suggests the presence of an additional high-ionization absorber, which imposes a strong O  viii edge on the spectrum. After correction for the absorption, the photon index of the intrinsic continuum, Γ ≃ 1.8, obtained from the ASCA data is quite similar to that of ordinary Seyfert 1 galaxies. Mrk 507 still has one of the flattest continuum slopes among the NLS1s, but is no longer exceptional. The strong optical Fe  ii emission remains unusual in the light of the correlation between Fe  ii strengths and steepness of soft X-ray slope.  相似文献   

17.
We present a detailed analysis of high-resolution Chandra observations of the merger system NGC 3256, the most infrared-luminous galaxy in the nearby universe. The X-ray data show that several discrete sources embedded in complex diffuse emission contribute ≳20 per cent of the total emission     in the  0.5–10 keV  energy range). The compact sources are hard and extremely bright and their emission is probably dominated by accretion-driven processes. Both galaxy nuclei are detected with  LX∼3–10×1040 erg s−1  . No evidence is found for the presence of an active nucleus in the southern nucleus, contrary to previous speculation. Once the discrete sources are removed, the diffuse component has a soft spectrum that can be modelled by the superposition of three thermal plasma components with temperatures   kT =0.6  , 0.9 and 3.9 keV. Alternatively, the latter component can be described as a power law with index  Γ∼3  . Some evidence is found for a radial gradient of the amount of absorption and temperature of the diffuse component. We compare the X-ray emission with optical, H α and NICMOS images of NGC 3256 and find a good correlation between the inferred optical/near-infrared and X-ray extinctions. Although inverse Compton scattering could be important in explaining the hard X-rays seen in the compact sources associated with the nuclei, the observed diffuse emission is probably of thermal origin. The observed X-ray characteristics support a scenario in which the powerful X-ray emission is driven solely by the current episode of star formation.  相似文献   

18.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

19.
We report on the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol 0109–383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably caused by the central source absorbed by an optically thick obscuring torus with N H∼2×1024 cm−2 . The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol 0109–383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission-line region unobscured. This may also be the case for objects such as the Seyfert 1 galaxy Mrk231.  相似文献   

20.
We examine the K shell emission lines produced by isothermal and simple multiphase models of the hot gas in elliptical galaxies and galaxy clusters to determine the most effective means for constraining the width of the differential emission measure, ( T  ), in these systems which we characterize by a dimensionless parameter, . Comparison of line ratios of two-temperature  ( <1)  and cooling flow  ( 1)  models is presented in detail. We find that a two-temperature model can approximate very accurately a cooling flow spectrum over 0.510 keV.
We re-analyse the ASCA spectra of three of the brightest galaxy clusters to assess the evidence for multiphase gas in their cores: M87 (Virgo), the Centaurus cluster and the Perseus cluster. K emission-line blends of Si, S, Ar, Ca and Fe are detected in each system, as is significant Fe K emission. The Fe K /K ratios are consistent with optically thin plasma models and do not suggest resonance scattering in these systems. Consideration of both the ratios of H-like to He-like K lines and the local continuum temperatures clearly rules out isothermal gas in each case. To obtain more detailed constraints, we fitted plasma models over 1.69 keV where the emission is dominated by these K shell lines and by continuum. In each case the ASCA spectra cannot determine whether the gas emits at only two temperatures or over a continuous range of temperatures as expected for a cooling flow. The metal abundances are near-solar for all of the multiphase models. We discuss the implications of these results and examine the prospects for determining the temperature structure in these systems with upcoming X-ray missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号