首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Summary Fresnel volumes and interface Fresnel zones of transmitted and head waves are studied. The relation derived for transmitted waves may also be used for converted reflected waves. Considerable attention is devoted to the penetration of Fresnel volumes across structural interfaces, particularly for head waves.  相似文献   

2.
The InterPACIFIC project was aimed at assessing the reliability, resolution, and variability of geophysical methods in estimating the shear-wave velocity profile for seismic ground response analyses. Three different subsoil conditions, which can be broadly defined as soft-soil, stiff-soil, and hard-rock, were investigated. At each site, several participants performed and interpreted invasive measurements of shear wave velocity (Vs) and compression wave velocity (Vp) in the same boreholes. Additionally, participants in the project analysed a common surface-wave dataset using their preferred strategies for processing and inversion to obtain Vs profiles. The most significant difference between the invasive borehole methods and non-invasive surface wave methods is related to resolution of thin layers and abrupt contrasts, which is inherently better for invasive methods. However, similar variability is observed in the estimated invasive and non-invasive Vs profiles, underscoring the need to account for such uncertainty in site response studies. VS,30 estimates are comparable between invasive and non-invasive methods, confirming that the higher resolution provided by invasive methods is quite irrelevant for computing this parameter.  相似文献   

3.
A quasi three-dimensional (QUASI 3-D) model is presented for simulating the subsurface water flow and solute transport in the unsaturated and in the saturated zones of soil. The model is based on the assumptions of vertical flow in the unsaturated zone and essentially horizontal groundwater flow. The 1-D Richards equation for the unsaturated zone is coupled at the phreatic surface with the 2-D flow equation for the saturated zone. The latter was obtained by averaging 3-D flow equation in the saturated zone over the aquifer thickness. Unlike the Boussinesq equation for a leaky-phreatic aquifer, the developed model does not contain a storage term with specific yield and a source term for natural replenishment. Instead it includes a water flux term at the phreatic surface through which the Richards equation is linked with the groundwater flow equation. The vertical water flux in the saturated zone is evaluated on the basis of the fluid mass balance equation while the horizontal fluxes, in that equation, are prescribed by Darcy law. A 3-D transport equation is used to simulate the solute migration. A numerical algorithm to solve the problem for the general quasi 3-D case was developed. The developed methodology was exemplified for the quasi 2-D cross-sectional case (QUASI2D). Simulations for three synthetic problems demonstrate good agreement between the results obtained by QUASI2D and two fully 2-D flow and transport codes (SUTRA and 2DSOIL). Yet, simulations with the QUASI2D code were several times faster than those by the SUTRA and the 2DSOIL codes.  相似文献   

4.
During strong ground motion it is expected that extended structures (such as bridges) are subjected to excitation that varies along their longitudinal axis in terms of arrival time, amplitude and frequency content, a fact primarily attributed to the wave passage effect, the loss of coherency and the role of local site conditions. Furthermore, the foundation interacts with the soil and the superstructure, thus significantly affecting the dynamic response of the bridge. A general methodology is therefore set up and implemented into a computer code for deriving sets of appropriately modified time histories and spring–dashpot coefficients at each support of a bridge with account for spatial variability, local site conditions and soil–foundation–superstructure interaction, for the purposes of inelastic dynamic analysis of RC bridges. In order to validate the methodology and code developed, each stage of the proposed procedure is verified using recorded data, finite‐element analyses, alternative computer programs, previous research studies, and closed‐form solutions wherever available. The results establish an adequate degree of confidence in the use of the proposed methodology and code in further parametric analyses and seismic design. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号