首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
变水深对畸形波及其时频能量谱的影响   总被引:1,自引:0,他引:1  
崔成  张宁川  郭传胜  房卓 《海洋学报》2011,33(6):173-179
使用VOF (volume of fluid)方法实现了变化水深条件下畸形波的数值模拟,使用小波分析方法计算模拟结果的时频能量谱,发现变化水深可以加强波浪的非线性相互作用,使转化到高频端的能量更多,产生了不对称程度更大的畸形波.  相似文献   

2.
基于非线性模型的畸形波模拟及其时频能量谱研究   总被引:1,自引:0,他引:1  
采用VOF(volume offluid)方法实现了畸形波的数值模拟.将数值结果与线性理论(方程(5))计算结果进行了对比,发现数值模拟结果更能够反映非线性特征.使用小波分析方法研究了畸形波的时频能量谱,发现形成畸形波的过程中存在很强的波浪非线性相互作用,使得波浪的能量向高频端转化.变水深地形可以加强波浪的非线性相互作用.使得转化到高频端的能量更多,产生畸形程度更大的畸形波.  相似文献   

3.
潜堤对波浪传播变形的物理模型试验研究   总被引:1,自引:0,他引:1  
以不可渗透光滑潜堤为研究对象,基于波浪水槽试验,分析了规则波和不规则波通过淹没梯形潜堤时的波浪外部形态变化以及内部能量变化规律。探讨了不同波浪要素(周期、波高、淹没水深)对潜堤附近波高影响的变化规律。同时,探究了潜堤斜坡坡度、堤顶淹没水深对波浪频谱在频域分布的影响。研究结果表明:当波浪通过潜堤时,波浪主频能量衰减,波浪能量由低频向高频移动;潜堤斜坡坡度越大、堤顶水深越小,波浪主频能量衰减越剧烈;波浪通过潜堤后高频波能量占潜堤次生波能量的1%~30%。  相似文献   

4.
卢坤  屈科  姚宇  孙唯一  蒋昌波 《海洋通报》2021,40(2):143-151
基于非静压单相流模型NHWAVE建立了高精度二维数值波浪水槽,采用日本2011年实测真实海啸波型系统研究了海啸波在岛礁上传播变形的规律,并且分析了波高、礁坪淹没水深和礁前斜坡坡度等因素对孤立波和真实海啸传播变形的影响。结果表明,相比孤立波,类海啸波的波长明显大于孤立波波长,在测点处引起的水面变化持续时间更长,同等波高情况下真实海啸波型比孤立波能够携带更多的能量,与岛礁的相互作用也更为复杂,在礁坪上形成的淹没水深约为孤立波的两倍。礁前斜坡坡度和礁坪淹没水深均对类海啸波的反射和透射系数有显著影响。随着礁前斜坡坡度的增加,反射系数和透射系数均逐渐增加。随着礁坪淹没水深的增加,反射系数逐渐减小,而透射系数逐渐增大。但是,反射系数和透射系数均随着入射波高的增加而逐渐减小。  相似文献   

5.
本文采用非静压单相流模型(NHWAVE)研究了波状涌潮在变化地形上的传播演变特性。通过设置合理的计算工况,系统分析了涌潮高度、潮前水深和斜坡坡度对波状涌潮水动力特性的影响。计算结果表明,涌潮高度和潮前水深对波状涌潮在变化地形上的水动力特性影响显著,不同的地形坡度对波状涌潮水动力特性影响较小。变化地形的存在可导致涌潮高度显著增大,引起沿程最大水位的剧烈变化,并且使涌潮传播速度降低。随涌潮高度的逐渐增加,斜坡前后潮差持续增大,同时表层速度与水深平均速度均呈现增大趋势。当增加潮前水深时,斜坡前后潮差减小,表层速度与水深平均速度单调递减。本文研究成果对于正确认识波状涌潮在变化地形上的传播演变规律有一定的参考意义,为波状涌潮河段涉水建筑物的工程设计及安全评估提供了科学依据。  相似文献   

6.
时莹  梁书秀  孙昭晨 《海洋工程》2018,36(6):116-123
基于浅水斜坡地形的物理模型试验数据,考察SWAN模型对实验室小尺度浅水波浪的模拟效果,进而检验其浅水项的模拟精度。模拟中采用直接输入初始测点的实测海浪谱进行造波,重点考察浅水中三波相互作用和变浅破碎两个源项,对不同工况下,SWAN模式在水深条件变化下的有效波高、谱平均周期、海浪谱演化的模拟能力进行研究。研究表明:模拟的有效波高较符合实测波浪的增长和衰减,但谱平均周期计算值明显偏小;海浪谱的能量转移机制同实测有较大区别,频谱模拟结果出现高频高估、低频低估现象。对两个源项进行对比分析得出三波相互作用对海浪谱的能量转换影响远大于变浅破碎耗散。想要提高近岸区谱平均周期和海浪谱的模拟精度则SWAN模型中三波非线性项的计算精确度仍需更多研究和改进。  相似文献   

7.
波浪爬高   总被引:1,自引:0,他引:1  
本文论述了斜面坡度、波陡、堤前水深对规则波爬高的影响。认为可以用伊里巴伦数I_r来区分堤前波浪运动形态的变化。利用本次室内模型试验的数据,得到了斜坡和陡墙上的波浪爬高曲线以及斜坡上波浪爬高计算公式。  相似文献   

8.
珊瑚岸礁破碎带附近波浪演化实验研究   总被引:4,自引:1,他引:3  
通过波浪水槽实验对珊瑚岸礁破碎带附近波浪演变规律开展研究,实验采用了概化的岸礁模型,测试了4种礁坪水深、4种礁前斜坡坡度和一系列入射波高的组合工况。对破碎带宽度和破碎带附近波浪的入射、反射、透射以及能量耗散进行了测量分析,透射波的计算考虑了礁坪上高次谐波的影响。结果表明:礁坪水深和入射深水波高的比值(即礁坪相对水深)是影响岸礁破碎带附近波浪演化的关键参数,而礁前斜坡坡度的影响在本文测量的范围内可以忽略不计。破碎带宽度与礁坪上浅水波波长为同一数量级,并与礁坪相对水深成反比;透射系数随礁坪相对水深的增大呈线性增长,而反射系数的变化却无类似规律;岸礁能够削弱超过50%入射波能,礁坪相对水深越小,波浪破碎造成的能量耗散越大。  相似文献   

9.
破碎波高是珊瑚礁地形上波浪演化的重要参数之一,对工程安全和海岸变形具有重要影响。通过二维波浪水槽,对珊瑚礁地形上破碎波高进行试验研究,分析破碎波高随波陡、礁坪水深以及礁前斜坡坡度的变化。研究表明,相对破碎波高随相对礁坪水深的增大而增大,随入射波陡的增大而减小,但礁前斜坡坡度对相对破碎波高的影响并不明显。通过引入相对礁坪水深,将经典的破碎波高计算公式拓展至珊瑚礁地形上破碎波高的计算。该公式计算值与前人的试验值进行对比验证,吻合较好。研究成果可为工程实践和数值模拟提供参考与借鉴。  相似文献   

10.
采用完全非线性Boussinesq方程建立的FUNWAVE模型进行波生沿岸流数值模拟研究,通过对不同斜坡地形和波浪入射条件下波生流的物理模型实验结果进行比较,验证了该数值模型能较准确地计算沿岸流;通过改变波浪的不同入射条件,对不同入射条件的沿岸流数值模拟得出:当其他条件不变时,仅入射波高增大时,沿岸流的流幅和幅值增大,幅值位置向深水移动;仅增大入射周期时,沿岸流的流幅显著增加,幅值的增加较小;斜坡地形坡度的改变能显著影响波生沿岸流的流幅和幅值,但对沿岸流幅值位置的水深影响不大。采用窄缝法处理动边界时,选择合适的窄缝起始水深对沿岸流的准确计算是十分必要的。  相似文献   

11.
为了探究岛屿周围珊瑚礁在抵御海啸灾害中的作用,采用激波捕捉类Boussinesq模型FUNWAVE-TVD,对孤立波在理想化三维岛礁地形上的传播及爬坡开展了现场尺度的平面二维数值模拟,分析了入射波高、礁坪水深、礁坪宽度、礁前斜坡坡度、礁后斜坡坡度、珊瑚礁糙率对岛屿四周孤立波爬高分布的影响。结果表明,珊瑚礁的存在总体上可有效降低岛屿四周孤立波的最大爬坡高度;入射波高、礁坪水深、礁坪宽度、珊瑚礁糙率是影响珊瑚岛礁四周孤立波爬坡分布的主要因素,岛礁四周最大爬坡高度会随入射波高和礁坪水深的增大、礁坪宽度和珊瑚礁糙率的减小而不断增大;当礁坪水深增大到一定程度时,珊瑚礁主要会对岛屿背浪面的爬高失去影响,而当礁坪宽度和珊瑚礁糙率减小至一定程度时,会出现岛礁四周最大爬高高于无珊瑚礁时爬高的现象;礁后斜坡的变缓会使岛礁周围的最大爬高有所减小,而礁前斜坡坡度对珊瑚岛礁周围的最大爬高几乎没有影响。  相似文献   

12.
在水槽中进行了几种不同坡度的斜坡平台上规则波作用下直墙波浪力试验,系统分析了直墙上相对最大压强和相对最大总力,给出了它们之间的比较关系。还进行了不同坡度的不规则波模型试验,并讨论了波浪力之间的特性。结果表明采用1:10、1:15的斜坡与平台相结合的试验室模拟,可得到与平底地形相近的直墙波浪力。  相似文献   

13.
利用大型水槽设计了在由深水到近岸不同坡度处海浪在变浅作用下诱导产生的长周期重力波的实验。正态随机海浪在深水生成并沿斜坡向浅水传播,记录了不同水深处波面高度随时间的变化过程并进行统计分析和谱分析。实验数据分析结果表明,长周期重力波的能量随着水深的变浅而增高,其谱锋频率位于0.2~0.3fp附近,这里fp是深水正态海浪过程的谱峰频率。长周期重力波的能量与入射波的能量比与波面高度分布的偏度密切相关。进一步分析了两种波动的能量谱峰值比和波面高度分布偏度的相关关系,获得了经验关系,为预测近岸浅水长周期重力波提供了科学依据。  相似文献   

14.
基于ArcGIS平台提取水深、坡度、粗糙度等地形特征,采用全覆盖多波来声纳测深数据,将南大西洋中脊研究区划分为4 267个统计单元,提取单元内地形特征的统计参数:均值、方差、最大值、最小值;经过统计筛选,最终选取水深均值、方差、最大值、最小值,坡度均值、方差、最大值、最小值共8个变量参与地形分类;利用K-均值方法进行非监督分类,将4 267个统计单元划分为5类地形,其中1 300个统计单元为裂谷,671个为裂谷壁,150个为内角高地斜坡,1 052个为高粗糙度的高地,1 093个为低粗糙度的次高地。将地形类型与地质调查结果进行初步关联,计算各类地形100网格见矿率系数,得到"内角高地斜坡"为热液硫化物发育的大概率地形类型,建议作为后继调查的重点勘探靶区。  相似文献   

15.
波浪作用对水库岸坡稳定性有重要影响。为了解波浪在岸坡地形中的传播演变机制和孔隙水压力响应特性,在波浪水槽末端铺设长6 m、坡度1∶16的斜坡沙床进行试验。通过改变入射波浪参数,测量斜坡段各处波面形态,采集斜坡段不同位置处孔隙水压力,分析了波浪在沙质岸坡上浅水变形区域内波面变化特征、波能演变规律以及岸坡土体孔压特征。结果表明:随着入射波浪厄塞尔数的增大,波浪浅水变形更加明显,波形不对称性加剧,各阶谐波之间互相作用更加强烈;水深较大区域,岸坡渗透作用大于浅水变形作用,波高呈现减小趋势;浅水变形剧烈区,浅水变形作用大于岸坡渗透作用,波高呈现增大趋势,最终破碎;孔压随入射波高与波周期的增大而增大,岸坡不同位置处孔压沿深度衰减速率和随波高增长速率均不同;岸坡孔压沿深度衰减速率与入射波周期呈现出正相关关系,与波高并无太大关系。  相似文献   

16.
地形斜坡对东海黑潮陆架坡折锋稳定性影响研究   总被引:1,自引:1,他引:0  
张艳华  王凯  齐继峰 《海洋科学》2017,41(7):120-128
为了研究地形斜坡对东海黑潮陆架坡折锋稳定性的影响,利用简化的线性原始方程,在一定背景流的情况下,主要从增长率、相速度、空间结构和能量方面分析海底地形斜坡变化对坡折锋稳定性的影响。模式结果表明,平底地形时,扰动的强度大且扰动区域广,但有地形斜坡时,扰动区域变窄,强度变弱,地形对坡折锋起稳定性作用。通过能量分析得出东海黑潮陆架坡折锋是正压和斜压的混合不稳定,其中斜压不稳定占主导地位。实验分析得出,地形对东海黑潮陆架坡折锋起稳定作用,斜坡增大,斜压不稳定和正压不稳定均减弱,斜压不稳定减弱更明显。  相似文献   

17.
畸形波生成、演化过程时频能量结构研究   总被引:1,自引:0,他引:1  
崔成  张宁川 《海洋工程》2011,29(3):59-66
基于流体体积(VOF)方法建立完全非线性波浪数值模型,控制方程采用雷诺时均方程和k-ε方程,使用该模型模拟了畸形波的生成、演化过程.在此基础上,使用小波分析法重点研究了畸形波生成、演化过程中波浪序列的时频能量结构.研究结果表明,畸形波生成前、后出现的过渡大波虽然不满足畸形波定义的所有指标,但其能量瞬时集中程度仍然很高,包含大量高频能量,内部结构和畸形波完全类似,应该引起重视.  相似文献   

18.
浅水极限波浪几何特征的实验研究   总被引:1,自引:0,他引:1  
该文通过物理模型实验,对浅水区域内的波浪在破碎前极限状态下的几何特征进行了研究。实验基于JONSWAP谱对不规则波浪进行模拟,通过对波群中出现的单体极限波浪进行捕捉并对波形进行测量而得到研究样本。为了考察底坡因素对极限波浪几何特征的影响,实验共考虑了3组大小分别为β=1/15、1/30以及1/45的地形坡度。统计结果表明,在实验所采用的坡度范围内,当地波高与水深对近岸极限波浪的影响最为显著,随着水深与波高因素变化,极限波浪的几何特征也出现明显的改变。坡度因素对极限波陡和偏度的影响很小,可以被忽略,但是对不对称度参数的影响相对比较明显,坡度越陡,不对称程度越剧烈。最后,通过参数化,本文给出了极限波浪几何特征变化的经验公式。  相似文献   

19.
在印度洋、大西洋沿岸,海岸工程设计波浪周期多在14 s以上,具有显著的中长周期波特征。通过以往工程项目的试验结果发现中长周期波下,规范计算的斜坡堤胸墙波浪力明显小于试验结果。因此,通过系列物理模型试验研究了中长周期波下的斜坡堤胸墙波浪力。分析斜坡坡度、肩台宽度和波浪条件对胸墙波浪力的影响。通过将试验结果与我国现有规范中的经验公式计算所得结果进行对比,发现规范更适用于胸墙底淹没的情况,而对于肩台出水情况,规范计算结果小于试验结果。由此提出了一种新的波浪力计算方法,计算准确度得到明显提高。  相似文献   

20.
畸形波与波群伴生波浪作用于系泊浮体,和常规随机波浪作用比较,运动响应时频域特征均将发生显著变化。基于物理模型试验,采用小波方法计算伴生波浪和常规随机波浪作用下系泊浮体运动响应的时频域特征变化及波群因子与浮体运动响应时频域特征的定量关系。结果表明:伴生波浪作用下浮体运动响应显著大于常规随机波浪的作用结果,且波群因子G A对浮体运动响应时频域特征有显著影响;伴生波浪作用下浮体纵荡运动的广义能量谱E(t)统计特征值E max(t)、E 1/10(t)、E 1/3(t)、E average(t)均明显大于相同波谱下常规随机波浪的结果,且随着波群因子G A增大显著增大;伴生波浪作用下各运动响应能量集中度δE显著大于常规随机波浪作用结果,且能量集中时域分布范围参数ΔT E以纵荡运动分量最为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号