首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrothermal circulation beneath the spreading axis plays a significant role in the exchange of energy and mass between the solid Earth and the oceans. Deep-seated hydrothermal circulation down to the crust/mantle boundary in the fast-spreading axis has been introduced by a number of studies regarding geological investigations and numerical models. In order to assess a reaction between hydrothermal fluid and host rock around the crust/mantle boundary, we conducted bulk trace element and Sr isotope analyses with a series of in situ investigations for crustal anorthosite, a reaction product between hydrothermal fluid and gabbro in the lowermost crustal section along Wadi Fizh, northern Oman ophiolite. In addition, we conducted titanite U–Pb isotope analyses to evaluate timing of the crustal anorthosite formation in the framework of the evolutional process of the Oman ophiolite. We estimated the formation age of the crustal anorthosite at 97.5 Ma ± 5.0 Ma, overlapping with the timing of the crust formation in the paleo spreading axis. The crustal anorthosite shows high-Th/U ratio (~2.5) and high-initial 87Sr/86Sr ratio (0.7050) due to seawater-derived hydrothermal fluid ingress into the precursor gabbro. With using analytical technique of micro-excavation at cryo-temperature, we detected Cl from a few micrometer-sized inclusion of aqueous fluid and chromite grains. The solubility of Cr was enhanced by complexation reactions with Cl in the hydrothermal fluid. Regarding reconstructed three-dimensional mass distribution of the inclusion and chromite composition, maximum Cr content of parental fluid was estimated at ~69 000 μg/g. The exceptionally high-Cr content was achieved locally by leaking of fluid and synchronous chromite crystallization during fluid entrapment. Presence of the deep-seated hydrothermal circulation could be assigned to the segment end, where cold seawater penetrates into the lowermost crust and extract heat along widely spaced network-like fluid channel.  相似文献   

2.
Poly-deformed and poly-metamorphosed glaucophane-eclogite mega-boudins beneath the Samail Ophiolite, Oman record an early subduction-related high-P metamorphism as well as subsequent overprinting deformation and metamorphism related to exhumation. Previously published Rb/Sr ages of 78 Ma and 40Ar/39Ar ages of 82-79 Ma record the major NE-directed shearing event that partially exhumed the eclogites to a shallower crustal level. New Sm/Nd garnet-garnet leachate-whole rock isochron data from garnet-bearing eclogite assemblages in the As Sifah subwindow in NE Oman are 110±9 Ma (DG02-87D); 5-point isochron) and 109±13 Ma (DG02-86E; 3-point isochron). On the basis of microfabric and field structural relationships these ages are interpreted to reflect the timing of prograde, peak high-P metamorphism in the rocks structurally beneath the Samail Ophiolite. This metamorphism clearly predates the age of formation of the obducted Samail oceanic lithosphere (97-94 Ma) as well as the subsequent obduction onto the margin (80-70 Ma). A U-Pb SHRIMP zircon age from small (<200 μm in length) zircons with herring-bone textured zoning from DG02-87D indicate that rapid zircon growth associated with high-Si phengites occurred at 82±1 Ma. Zircon growth is possibly related to liberation of Zr on garnet breakdown during decompression metamorphism under high-P conditions with exhumation. These data require that crustal stacking models attendant with ophiolite obduction are inappropriate to explain the Oman high-P metamorphism.  相似文献   

3.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


4.
The Mawat ophiolite is part of the Mesozoic Neo‐Tethyan ophiolite belt of the Middle East and is located in the Zagros Imbricate Zone of Iraq. It represents fossil fragments of the Neo‐Tethyan oceanic lithosphere within the Alpine collisional system between the Arabian and Eurasia Plates. The first U–Pb zircon dating of the Daraban leucogranite from the Mawat ophiolite provides a 207Pb–206Pb age of 96.8 ± 6.0 Ma. The age is 59.0 ± 6.0 m.y. older than the previously published age of the Daraban leucogranite obtained by 40Ar–39Ar muscovite dating method. The U–Pb dating of magmatic zircons collected from the Daraban leucogranite, which intrudes into the Mawat ophiolite, reveals that melting of the pelagic sediment beneath the hot Zagros proto‐ophiolite in an intra‐oceanic arc environment led to anatexis at the subduction front and the generation of granitic melts at 96.8 ± 6.0 Ma, which were emplaced in the overlaying mantle wedge. This process was a response to the initial formation of the Neo‐Tethys ophiolite above a northeast‐dipping intra‐oceanic subduction zone at 96.8 ± 6.0 Ma. Published 40Ar–39Ar muscovite dating from the same leucogranite dike yields plateau ages of 37.7 ± 0.3 Ma, reflecting that the age was reset during the Arabia–Eurasia continental collision. Therefore, the bimodal age populations from the granitic intrusion in the Mawat ophiolite preserve a record of the subduction to the collision cycle of the Zagros Orogenic Belt. The 59.0 ± 6.0 m.y. age difference from the Daraban leucogranite represents the duration of the subduction‐collision cycle of the Zagros Orogenic Belt in the Kurdistan region of Iraq and the time span for the closure of the Neo‐Tethys Ocean along the northern margin of the Arabian plate.  相似文献   

5.
A high-temperature contact is described between the basal pargasite-bearing spinel-lherzolites of the Bay of Islands ophiolite complex and underlying garnet-granulite facies metagabbros of its dynamothermal aureole. Three distinct high-temperature hydrous assemblages occur in the basal mylonites of the peridotite, and spinel- and garnet-bearing corona textures indicative of increase in pressure under constant or increasing temperature conditions are described for the first time from the uppermost part of the aureole. On the basis of garnet-clinopyroxene geothermometry and garnet-forming reactions in metabasic rocks, P?T conditions of 7–11 kbar, 750–850°C are estimated for rocks on both sides of the contact. Steep inverted gradients in both temperature and pressure of equilibration occur in the aureole, which most likely represents a thinned, overturned and metamorphosed section through an ophiolite sequence. It is proposed that the aureole formed in a low-angle shear zone cutting the oceanic crust and upper mantle.Age data shows that the Bay of Islands Complex was 30–40 Ma old and therefore relatively cold at the time of formation of the aureole. Prolonged (> 1 Ma) shear heating must therefore have occurred at high shear stresses and movement rates (≥ 1 kbar, 10 cm/yr) to produce the high contact temperatures. The displacement surface probably initiated as a discrete fault, evolving into a viscous shear zone with time. Downward movement of the locus of shearing into weaker lithologies and finally thrusting of the ophiolite-aureole complex over cold sediments accounts for the preservation of steep metamorphic gradients in the aureole.The observed pressures at the ophiolite-aureole contact are 3–7 kbar in excess of the expected load pressure from the present thickness of the ophiolite. The cause of the pressure excess was removed before formation of lower-grade parts of the aureole. Possible explanations are tectonic thinning of the ophiolite during displacement or more likely emplacement of nappes on top of the ophiolite before formation of the aureole. A model involving detachment of the ophiolite slice from below a subduction zone can account for the high pressures, rapid uplift and erosion during displacement, and the coincidence of K-Ar ages of amphiboles from the aureole and the sheeted dyke complex of the ophiolite.  相似文献   

6.
Intercalibration of international and domestic 40Ar/39Ar dating standards   总被引:2,自引:0,他引:2  
Four international standards, Ga1550, MMhb-1, Lp-6, Bem 4M, and one domestic standard BT-1 have been intercalibrated. The repeated measurements on MMhb-1 with different mass demonstrate that MMhb-1 is inhomogeneous in age and its average age is 519.8 Ma. The results of Bern 4M and Lp-6 reflect that they have an invariable value of 40Ar*/39Ark (F) and the ages we obtained are consensus with their K-Ar age: Lp-6=127.7Ma; Bern 4M=18.2 Ma. Analyses of BT-1 age spectra, Ca/K and Cl/K spectra as well as inverse isochrons indicate that the sample is homogeneous and invariable and keeps close chemically, with its trapped argon isotope composition close to the atmosphere. The dating results show that age values are reproducible and steady, total fusion age, step-heating age, plateau age and isochron age are in accord with each other within the error range (2σ). Therefore, we recommend 28.7 Ma as the calibrated age of BT-1. We also discuss the variation in neutron flux gradients of Beijing 49-2 reactor. It was found that the neutron flux gradient varies considerably, and more monitors (standard samples) are needed to fix the trend of variation. The coefficient of the 49-2 reactor that transfers the ratio of production rate of 37ArCa/39ArK into Ca/K ratio is 1.78. This is different from that reported earlier, 2.0, which may be caused by the reconstruction of the reactor.  相似文献   

7.
The thinned continental crust of the west Galicia margin is bound by a belt of serpentinized peridotites (‘peridotite ridge’) lying about 300 km off the coast in the North Atlantic ocean. From this ridge, a gabbro and a chlorite rock were studied in an attempt to substantiate rift-related subcontinental magmatism, occurring prior to sea-floor spreading. U-Pb dating of 13 different zircon fractions yields a precise age of 122.1 ± 0.3 Ma (2σ) for the emplacement of the chlorite rock protolith, from which more than 50% of Si and alkali-calc-alkali elements were lost during greenschist facies tectonometamorphism. Sr and Nd isotope signatures suggest that the gabbro and chlorite rock protoliths were derived from mantle sources that were moderately depleted in LILE, relative to a chondritic reservoir. No evidence for the presence of continental material in the magma source regions can be observed. From the new zircon age of 122.1 ± 0.3 Ma, and earlier determined39Ar40Ar age of 122.0 ± 0.6 Ma for amphibole from the same locality, it can be documented that magma formation, solidification and unroofing of the mantle rocks occurred during a short period of time of about 3.4 Ma, which means that the peridotite ridge detached from the continent and rose to the surface immediately after, or even coevally with mantle melting.  相似文献   

8.
Knowledge of the time-scales of emplacement and thermal history during assembly of composite felsic plutons in the shallow crust are critical to deciphering the processes of crustal growth and magma chamber development. Detailed petrological and chemical study of the mid-Cretaceous, composite Emerald Lake pluton, from the northern Canadian Cordillera, Yukon Territory, coupled with U–Pb and 40Ar/39Ar geochronology, indicates that this pluton was intruded as a series of magmatic pulses. Intrusion of these pulses produced a strong petrological zonation from augite syenite, hornblende quartz syenite and monzonite, to biotite granite. Our data further indicate that multiple phases were emplaced and cooled to below the mineral closure temperatures over a time-scale on the order of the resolution of the 40Ar/39Ar technique (1 Myr), and that emplacement occurred at 94.3 Ma. Simple thermal modelling and heat conduction calculations were used to further constrain the temporal relationships within the intrusion. These calculations are consistent with the geochronology and show that emplacement and cooling were complete in less than 100 kyr and probably 70±5 kyr. These results demonstrate that production, transport and emplacement of the different phases of the Emerald Lake pluton occurred essentially simultaneously, and that these processes must also have been closely related in time and space. By analogy, these results provide insights into the assembly and petrogenesis of other complex intrusions and ultimately lead to an understanding of the processes involved in crustal development.  相似文献   

9.
Rabaul Caldera is the most recently active (1937–1943) of four adjoining volcanic centres aligned north-south through the northern extremity of eastern New Britain. Geological mapping after the 1983–1985 Rabaul seismic and deformation crisis has partially revealed a long and complex eruption history dominated by numerous explosive eruptions, the largest accompanied by caldera collapse. The oldest exposed eruptives are the basaltic pre-caldera cone Tovanumbatir Lavas K/Ar dated at 0.5 Ma. The dacitic Rabaul Quarry Lavas exposed in the caldera wall and K/Ar dated at 0.19 Ma, are overlain by a sequence of dacitic and andesitic pyroclastic flow and fall deposits. Uplifted coral reef limestones, interbedded within the pyroclastic sequence on the northeast coast, suggest that explosive eruptions in the Rabaul area had commenced prior to the 0.125 Ma last interglacial high sea level stand. The pyroclastic sequence includes the large Boroi Ignimbrites and Malaguna Pyroclastics both 40Ar/39Ar dated at about 0.1 Ma, and the Barge Tunnel Ignimbrite 40Ar/39Ar dated at around 0.04 Ma. Few reliable ages exist for the many younger eruptives. These include Holocene ignimbrites of the latest caldera-forming eruptions—the Raluan Pyroclastics variously dated (14C) at either about 3500 or 7000 yr B.P., and the ca. 1400 yr B.P. Rabaul Pyroclastics. At least eight intracaldera eruptions have occurred since the 1400 yr B.P. collapse, building small pyroclastic and lava cones within the caldera.A major erosional episode is evident as a widespread unconformity in the upper pyroclastic stratigraphy at Rabaul. Lacking relevant radiometric ages, this episode is assumed to have occurred during last glaciation low sea levels and is here arbitarily dated at ca. ?20 ka. At least five, possibly nine, significant ignimbrite eruptions have occurred at Rabaul during the last ?20 ka. The new eruptive history differs considerably from that previously published, which considered ignimbrite eruption and caldera collapse to have first occurred at 3500 yr B.P.Rabaul volcanism has been dominated by two main types: (a) basaltic and basaltic andesite cone building eruptions; and (b) dacitic, and rarely andesitic or rhyolitic, plinian/ignimbrite eruptions of both high- and low-aspect ratio types. The 1400 yr B.P. Rabaul Ignimbrite is a type example of a low-aspect ratio, high-energy, and potentially very damaging eruption. Fine vitric ash deposits, common in the Rabaul pyroclastic sequence, demonstrate the frequent modification of eruptions by external water probably related to early caldera lakes or bays. Interbedding of these fine ashes with plinian pumice lapilli beds suggests that many early eruptions occurred from multiple vents, located in both wet and dry areas.  相似文献   

10.
Coexisting fine-grained (0.1–20 μm) authigenic silicate minerals separated from altered tuffs in Miocene and Plio-Pleistocene lacustrine deposits were characterized petrographically and using X-ray powder diffraction. The authigenic minerals are dominated by clinoptilolite, erionite, phillipsite, K-feldspar, silica, calcite, smectite, and randomly interstratified illite/smectite. Minor accessories of opal-CT, cristobalite, and barite are present with the major alteration minerals. Authigenic minerals from altered tuffs were dated using the K/Ar method to evaluate the utility of these minerals for determining the time of alteration in low-temperature diagenetic environments. The eruption ages of some of these zeolite-rich tuffs were determined using the 40Ar/39Ar method on single sanidine and plagioclase minerals. The K/Ar isotopic ages of the fine-grained K-feldspar show minimal variation compared with results from the clinoptilolite separates. The isotopic ages from the authigenic K-feldspar (15-13.8 Ma) and some of the zeolites (16.-6.7 Ma) are similar to the eruption ages of the tuffs and indicate early alteration. Despite their open-framework structure, zeolites apparently can retain part or all of their radiogenic argon under favorable conditions (e.g., saturated environment). How much of the radiogenic argon is retained is estimated from the isotopic ages of other coexisting secondary minerals that are commonly dated by the K/Ar method. Although zeolite isotopic ages should be interpreted with caution, they may be useful to constrain temporal relations of low-temperature diagenetic processes when used in conjunction with other dateable minerals.  相似文献   

11.
The Grande Découverte Volcanic Complex (GDVC), active since at least 0.2 Ma, is the most recent volcanic complex of the Basse-Terre Island (Guadeloupe, Lesser Antilles Arc). A detailed geochronological study using the K–Ar Cassignol–Gillot technique has been undertaken in order to reconstruct the history of effusive activity of this long-lived volcanic system. Twenty new ages permit to suggest that the GDVC experienced at least six main effusive stages, from 200 ka to present time. To the north of the GDVC, the GDS (Grande Découverte–Soufrière volcano) has been active since at least 200 ka, and to the south, the TRMF (Trois-Rivières–Madeleine Field), started to be emplaced 100 ka. Morphological investigations suggest that the whole TRMF volcanism was emitted from vents distinct from the GDS, most probably a large E–W fissure network linked to the Marie-Galante rift. The mean age of 62 ± 5 ka, obtained for the E–W Madeleine–Le Palmiste alignment suggests that a fissure-opening event occurred at that time. However, whole-rock major and trace element signatures are similar for both systems, suggesting that a common complex magma-plumbing system has fed the overall GDVC. We report very young ages for lava flows from the TRMF, which implies that < 10 ka volcanic activity is now identified for both massifs. Although hazards associated with such effusive volcanism are much lower than those associated with potential flank-collapse of the Soufrière lava dome or a magmatic dome eruption with explosive phases within the GDS, the emplacement of relatively large Holocene age lava flows (3–1 × 108 m3) suggests that a revised integrated volcanic hazard assessment for Southern Basse-Terre should now consider the potential for renewed future activity from two Holocene volcanic centers including the TRMF.  相似文献   

12.
Abstract Meatiq and Hafafit core complexes are large swells in the Eastern Desert of Egypt, comprising two major tectono‐stratigraphic units or tiers. The lower (infrastructure) unit is composed of variably cataclased gneissose granites and high‐grade gneisses and schists. It is structurally overlain by Pan–African ophiolitic mélange nappes (the higher unit). The two units are separated by a low‐angle sole thrust, along which mylonites are developed. Major and trace element data indicate formation of the gneissose granites in both volcanic arc and within‐plate settings. Nevertheless, all analyzed gneissose granites and other infrastructural rocks, exhibit low initial ratios (Sri) (<0.7027), positive εNd(t) (+4.9 to +10.3) and Neoproterozoic Nd model age (TDM) (592–831 Ma for the gneissose granite samples). Although these values are compatible with other parts of the Arabian– Nubian Shield considered to be juvenile, the εNd(t) values and several incompatible element ratios of the gneissose granites are too low to be derived from a mantle source without contribution from an older continental crust. Our geological, Sr–Nd isotopic and chemical data combined with the published zircon ages indicate the existence of a pre‐Neoproterozoic continent in the Eastern Desert that started to break up at ca 800 Ma. Rifting and subsequent events caused the formation of oceanic crust and emplacement within‐plate alkali basalts in the hinterland domains of the old continent. The emplacement of basaltic magma might have triggered melting of lower crust in the old continent and resulted in emplacement of the within‐plate granite masses between 700 Ma and 626 Ma. The granite masses and other rocks in the old continent have been subjected to deformation during the over‐thrusting of Pan–African nappes, probably because of the oblique convergence between East and West Gondwanaland. Rb–Sr isotopes of the gneissose granites in both Meatiq and Hafafit core complexes defines an isochron age of 619 ± 25 Ma with Sri of 0.7009 ± 0.0017 and mean squares of weighted deviates = 2.0. We interpret this age as the date of thrusting of the Pan–African nappes in the Eastern Desert. Continued oblique convergence between East and West Gondwanaland could have resulted in the formation northwest–southeast‐trending Meatiq and Hafafit anticlinoriums.  相似文献   

13.
Santo Antão, the northernmost island of the Cape Verde Archipelago, consists entirely of silica-undersaturated volcanic products and minor intrusions. 40Ar–39Ar incremental heating experiments have been carried out on 24 samples that cover the entire exposed chronological sequence. The oldest lavas (7.57±0.56 Ma), representing an older volcanic basement, are exposed about 620 m above mean sea level. After an interval of quiescence of up to 4.3 Ma the volcanic activity resumed and continued at low eruption rates. The older basement is unconformably overlain by a ca. 810-m-thick lava sequence that spans an age range from 2.93±0.03 to 1.18±0.01 Ma. This sequence is cut by many dykes and sills. Simultaneous volcanic activity occurred in the northeastern, central and eastern part of the island. A phonolitic pumice deposit that forms a noteworthy feature over most of the island has an estimated age of 0.20 Ma. This predates volcanic activity that formed the highest point of the island (Tope de Coroa) which has an age of 0.17±0.02 Ma. The most recent eruption on the island formed nephelinitic lavas in the Porto Novo region at 0.09±0.03 Ma. The oldest volcanism exposed on Santo Antão, which took place about 7.6 Ma ago, was simultaneous with waning activity on Maio at the eastern end of the Cape Verde Archipelago.  相似文献   

14.
The Kohistan–Ladakh Arc in the Himalaya–Karakoram region represents a complete section of an oceanic arc where the rocks from mantle to upper crustal levels are exposed. Generally this arc was regarded as of Jurassic–Cretaceous age and was welded to Asia and India by Northern and Southern Sutures respectively. Formation of this arc, timings of its collisions with Asia and India, and position of collision boundaries have always been controversial. Most authors consider that the arc collided with Asia first during 102–75 Ma and then with India during 55–50 Ma, whereas others suggest that the arc collided with India first at or before 61 Ma, and then the India–arc block collided with Asia ca 50 Ma. Recently published models of the later group leave several geological difficulties such as an extremely rapid drifting rate of the Indian Plate (30 ± 5 cm/year) northwards between 61–50 Ma, absence of a large ophiolite sequence and accretionary wedge along the Northern Suture, obduction of ophiolites and blueschists along the Southern Suture, and the occurrence of a marine depositional environment older than 52 Ma in the Indian Plate rocks south of the Southern Suture. We present a review based on geochemical, stratigraphic, structural, and paleomagnetic data to show that collision of the arc with Asia happened first and with India later.  相似文献   

15.
The Dongco ophiolite occurred in the middle-western segment of the Bangong-Nujiang suture zone. The thickness of the ophiolite suite is more than 5 km, which is composed, from bottom to top, of the mantle peridotite, mafic-ultramafic cumulates, basic sills (dykes) and basic lava and tectoni- cally emplaced in Jurassic strata (Mugagongru Group). The Dongco cumulates consist of dunite- troctolite-olivine-gabbro, being a part of DTG series of mafic-ultramafic cumulates. The basic lavas are characterized by being rich in alkali (Na2O K2O), TiO2, P2O5 and a LREE-rich type pattern dip- ping right with [La/Yb]=6.94―16.6 as well as a trace elements spider-diagram with normal anomaly of Th, Nb, Ta, Hf. Therefore, the Dongco basic lavas belong to ocean-island basalt (OIB) and dis- tinctly differ from mid-ocean ridge basalt (MORB) and island-arc basalt (IAB) formed in the plate convergence margin. The basic lavas have higher 87Sr/86Sr (0.704363―0.705007), lower 143Nd/144Nd (0.512708―0.512887) and εNd(t ) from 2.7― 5.8, indicating that they derive from a two-components mixing mantle source of depleted mantle (DM) and enriched mantle (EMI). From above it is ready to see that the Dongco ophiolite forms in oceanic island (OIB) where the mantle source is replaced by a large amount of enriched material, therefore it distinctly differs from these ophiolites formed in island-arc and mid-oecan ridge. Newly obtained SHRIMP U-Pb dating for zircon of the cumulate troctolite is 132 ± 3 Ma and whole-rock dating of ~(39)Ar/~(40)Ar for the basalt is 173.4 ± 2.7 Ma and 140.9 ± 2.8 Ma, indicating that the Dongco ophiolite formed at Early Cretaceous and the middle-western segment of the Bangong-Nujiang oceanic basin was still in the developing and evolving period at Early Cretaceous.  相似文献   

16.
Five samples from a biotite-hornblende granodiorite phase of the 42.5 Ma Quxu pluton, Gangdese batholith, southern Tibet, have been collected at 250 m vertical intervals. Biotite from these rocks yields monotonically decreasing40Ar/39Ar isochron ages with decreasing elevation of 26.8 ± 0.2, 23.3 ± 0.5, 19.7 ± 0.3, 18.4 ± 0.4,and17.8 ± 0.1Ma (Tc = 335°C). Coexisting K-feldspars have virtually identical minimum apparent40Ar/39Ar ages of 17.0 ± 0.4Ma (Tc = 285°C). These data indicate parts of southern Tibet experienced a pulse of uplift in the early Miocene with the rate of uplift rising from 0.07 to 4.4 mm/year in the interval 20 to 17 Ma. An apatite fission track age of 9.9 ± 0.9Ma from this locality constrains the average uplift rate at this site to about 0.81 mm/year between 17 and 9.9 Ma and 0.30 mm/year from 9.9 Ma to present. K-feldspar from the Dagze granite, 30 km to the east, near Lhasa, yields a minimum apparent40Ar/39Ar age of 35.9 ± 0.9Ma (Tc = 227°C) which indicates an average uplift rate there of 0.21 mm/year since then. The marked pulse of uplift of the Quxu granodiorite and the difference in uplift history between the Dagze and Quxu plutons suggests southern Tibet has experienced discrete pulses of uplift variable in both space and time. These data are not consistent with models which require a large proportion of uplift of the Tibetan plateau to have occurred in the last 2 Ma. The data support the suggestion that convergence between India and Asia was largely accommodated by tectonic escape during the opening of the South China Sea 32 to 17 Ma ago and permit distributed shortening as a mechanism for crustal thickening and uplift of this part of the Tibetan plateau subsequent to 20 Ma.  相似文献   

17.
40Ar/39Ar age spectrum analyses of samples from Broken Hill, New South Wales, indicate that the region has experienced a complex thermal history following high-grade metamorphism, 1660 Ma ago. The terrain cooled slowly (~3°C Ma?1) until about 1570 Ma ago, when the temperature fell below about 500°C. Following granitoid emplacement ~1500 Ma ago, the region remained relatively cold until affected by a thermal pulse 520±40Ma ago, causing temperatures to rise to~350°C in some places. During this event, accumulated40Ar was released from minerals causing a significant Ar partial pressure to develop. Laboratory Ar solubility data combined with the40Ar/39Ar age spectra gives a local estimate of this partial pressure of ~10?4atm. The region finally cooled below 100°C about 280 Ma ago.40Ar/39Ar age spectrum analyses of hornblende, plagioclase and clinopyroxene containing excess40Ar are characterized by saddle-shaped age spectra. Detailed analysis of plagioclase samples reveals a complex diffusion behaviour, which is controlled by exsolution structures. This effect, in conjunction with the presumed different lattice occupancy of excess40Ar with respect to radiogenic40Ar, appears to be responsible for the saddle-shaped age spectra.  相似文献   

18.
The ~ 14 km diameter Jänisjärvi impact structure is located in Svecofennian Proterozoic terrain in the southeastern part of the Baltic shield, Karelia, Russia. Previous radioisotopic dating attempts gave K/Ar and 40Ar/39Ar ages of 700 ± 5 Ma and 698 ± 22 Ma, respectively, with both results being difficult to interpret. Recent paleomagnetic results have challenged these ages and proposed instead ages of either 500 Ma or 850–900 Ma. In order to better constrain the age of the Jänisjärvi impact structure, we present new 40Ar/39Ar data for the Jänisjärvi impact melt rock. We obtained five concordant isochron ages that yield a combined isochron age of 682 ± 4 Ma (2σ) with a MSWD of 1.2, P = 0.14, and 40Ar/36Ar intercept of 475 ± 3. We suggest that this date indicates the age of the impact and therefore can be used in conjunction with existing paleomagnetic results to define the position of the Baltica paleocontinent at that time. Argon isotopic results imply that melt homogenization was achieved at the hundred-micrometer scale certainly, because of the low-silica content of the molten target rock that allows fast 40Ar? diffusion in the melt. However, the large range of F(40Ar?inherited) (4.1% to 11.0%) observed for seven grains shows that complete isotopic homogenization was not reached at the centimeter and perhaps the millimeter scale. The F(40Ar?inherited) results are also in good agreement with previous Rb and Sr isotopic data.  相似文献   

19.
The magmatic province of the northern Lhasa Terrane includes an Early Cretaceous (120–130 Ma) plutonic event, and a Late Cretaceous (80–110 Ma) volcanic event. The plutonic association constitutes an older suite of granodiorites, monzogranites and tonalites and a younger peraluminous leucogranite facies. Plutonism occurred about 20 Ma after obduction of the Banggong ophiolite, following closure between the Lhasa and Qiantang Terranes.The earlier suite is of broadly calc-alkaline in composition but differs from arc-related magmas in that only more evolved compositions are represented (SiO2 > 58%) and Rb/Zr ratios are elevated relative to the Gangdese batholith to the south. Trace-element and isotopic constraints are consistent with derivation from a Late Proterozoic amphibole-bearing crustal source requiring temperatures > 950°C during anatexis. The leucogranites require a pelitic source which is tentatively identified as the Nyaingentanglha basement exposed south of the plutonic province. Unlike the High Himalaya leucogranites, trace elements and field relations require a high degree of melting at source (> 50%) suggesting fluid-absent melting at temperatures > 850°C. Such high crustal temperatures indicate convective heat transfer from the mantle.Thermal constraints together with a tectonic setting of post-emplacement uplift followed by a marine transgression in the northern Lhasa Terrane can not be reconciled with a model of tectonically thickened crust but are consistent with post-collision attenuation of the lithosphere.  相似文献   

20.
The Niutangjie tungsten deposit is a bedded skarn-type scheelite deposit and is located at the junction between Ziyuan and Xingan counties in the north of Guangxi,China.The deposit is genetically related to a fine-grained two-mica granite within the orefield.Zircon LA-ICP-MS U-Pb dating of the granite yielded a Silurian(Caledonian)age of 421.8±2.4 Ma,which is contemporaneous with the adjacent Yuechengling batholith.Mineralization within the skarn is associated with a quartz,garnet,and diopside gangue,and scheelite is present in a number of different mineral assemblages,such as quartz-scheelite and quartz-sulfide-scheelite;these assemblages correspond to oxide and sulfide stages of mineralization.Sm-Nd isotope analysis of scheelite yielded an isochron age of 421±24 Ma.Although the uncertainty on this date is high,this age suggests that the scheelite mineralization formed during the Late Caledonian,at a similar time to the emplacement of the Niutangjie granite.Zircons within the granite have?Hf(t)values and Hf two-stage model ages of?6.5 to?11.6,and 1.79 to 2.11 Ga,respectively.These data suggest that the magma that formed the granite was derived from Mesoproterozoic crustal materials.Scheelite?Nd(t)values range from?13.06 to?13.26,also indicative of derivation from ancient crustal materials.Recent research has identified Caledonian magmatism in the western Nanling Range,indicating that this magmatism may be the source of contemporaneous tungsten mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号