首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperatures of the formation of mud-volcanic waters are determined based on concentrations of some temperature-dependent components (Na–Li, Mg–Li). Estimates obtained for the Taman and Kakhetia regions are similar and range from 45 to 170°, which correspond to depths of 1–4.5 km. The calculated temperatures correlate with the chemical (Li, Rb, Cs, Sr, Ba, B, I, and HCO3) composition of water and 13 (2) and 13 (CH4) values in spontaneous gases. The isotope values indicate that mechanisms of the formation of 13-rich gases, i.e., gases with high 13 values (up to +16.0 in 2 and –23.4 in CH4) in mud-volcanic systems of Taman and Kakhetia are governed by fluid-generation temperatures rather than the supply of abyssal gases. The 11 value was determined for the first time in mud-volcanic products of the Caucasus region. This value ranges from +22.5 to +39.4 in the volcanic water of Georgia, from –1.2 to +7.4 in the clayey pulp of Georgia, and from –7.6 to +13.2 in the clayey pulp of Taman. It is shown that the 11 value in clay correlates with the fluid-generation temperature and 11 correlates with 13 in carbon-bearing gases. These correlations probably testify to the formation of different phases of mud-volcanic emanations in a single geochemical system and suggest the crucial role of temperature in the development of isotope-geochemical features.  相似文献   

2.
Eclogites from the Roberts Victor mine, Kaapvaal craton are classic examples of subducted Achaean oceanic crust brought up as xenoliths by kimberlite. New in situ trace element and oxygen isotope data (18O=3.09–6.99 SMOW) presented here reemphasise their origin from seawater-altered plagioclase-rich precursors. Their Hf–Nd isotopic compositions are not in agreement with compositions predicted by geochemical modelling of the isotopic composition of aged subducted oceanic crust. Instead, Hf isotopic compositions are very heterogeneous, varying between 0.281625 and 0.355077 (–37.8 and +2561 Hf) at the time of kimberlite emplacement (128 Ma) in keeping with equally variable Nd isotopic compositions (0.511124–0.545092; –26.3 to +636 Nd). However, most samples plot on the terrestrial array. The isotopic compositions of some samples are too extreme to play a major role in mixed peridotite-eclogite melting in basalt source regions, whereas the isotopic composition of other samples is reconcilable with a contribution of up to ca. 15% of eclogite partial melt to the MORB source. Most importantly, our results show that ancient subducted oceanic crust is not isotopically homogeneous and should not be treated as a component or reservoir during geochemical modelling. The heterogeneity reflects radiogenic in-growth starting from small compositional heterogeneities in gabbroic protoliths, followed by modification during sea-floor alteration, subduction and emplacement into the subcratonic lithosphere.  相似文献   

3.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

4.
Hf isotope systematics in granitoids from the central and southern Alps   总被引:1,自引:0,他引:1  
First initial-Hf isotopic compositions for samples from the Alpine domain are presented and discussed. The results are mainly based on zircons and a few whole rocks with ages between 30 and 450 Ma. Of those so far analyzed, the present-day Hf isotopic compositions of zircons from non-metamorphic and metamorphic granitoid rocks vary between 0.2824 and 0.2829. Zircon populations with concordant U-Pb ages have much higher initial 176Hf/177Hf than inversely discordant populations which have been contaminated with older zircons containing less radiogenic Hf. Correlated Nd-Hf crustal-residence ages have been found involving model parameters of Hf/Nd=f(Lu/Hf)/f(Sm/Nd) 1.6 for the depleted mantle and f(Lu/Hf)/f(Sm/Nd) 1.2 for elemental fractionations in the crust. The model implies 176Lu/177Hf of 0.017 for the bulk crust. It is suggested that the granitoid rocks are the result of mixing of subcontinental mantle-derived magmas with 1.7 Ga old recycled and partially molten crustal material. The continental/mantle component mass-ratio values for the granitoids range between 0.3 and 2.  相似文献   

5.
Late Cretaceous, granitic pegmatite-aplite dikes in southern California have been known for gem-quality minerals and as a commercial source of lithium. Minerals, whole-rock samples, and inclusion fluids from nine of these dikes and from associated wall rocks have been analyzed for their oxygen, hydrogen, and carbon isotope compositions to ascertain the origins and thermal histories of the dikes. Oxygen isotope geothermometry used in combination with thermometric data from primary fluid inclusions enabled the determination of the pressure regime during crystallization.Two groups of dikes are evident from their oxygen isotope compositions (18Oqtz+10.5 in Group A, and +8.5 in Group B). Prior to the end of crystallization, Group A pegmatites had already extensively exchanged oxygen with their wall rocks, while Group B dikes may represent a closer approximation to the original isotopic composition of the pegmatite melts. Oxygen isotope fractionations between minerals are similar in all dikes and indicate that the pegmatites were emplaced at temperatures of about 730 ° to 700 ° C. Supersolidus crystallization began with the basal aplite zone and ended with formation of quench aplite in the pocket zone, nearly to 565 ° C. Subsolidus formation of gem-bearing pockets took place over a relatively narrow temperature range of about 40 ° C (approximately 565–525 ° C). Nearly closed-system crystallization is indicated.Hornblende in gabbroic and noritic wall rocks (Dw.r. = –90 to –130) in the Mesa Grande district crystallized in the presence of, or exchanged hydrogen with, meteoric water (D –90) prior to the emplacement of the pegmatite dikes. Magmatic water was subsequently added to the wall rocks adjacent to the pegmatites.Groups A and B pegmatites cannot be distinguished on the basis of their hydrogen isotope compositions. A decrease in D of muscovite inward from the walls of the dikes reflects a decrease in temperature. D values of H2O from fluid inclusions are: –50 to –73 (aplite and pegmatite zones); –62 to –75 (pocket quartz: Tourmaline Queen and Stewart dikes); and –50 ± 4 (pocket quartz from many dikes). The average 13C of juvenile CO2 in fluid inclusions in Group B pegmatites is –7.9. In Group A pegmatities, 13C of CO2 is more negative (–10 to –15.6), due to exchange of C with wall rocks and/or loss of 13C-enriched CO2 to an exsolving vapor phase.Pressures during crystallization of the pockets were on the order of 2,100 bars, and may have increased slightly during pocket growth. A depth of formation of at least 6.8 km (sp. gr. of over burden = 3.0, and P fiuid=P load) is indicated, and a rate of uplift of 0.07 cm/yr. follows from available geochronologic data.  相似文献   

6.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

7.
Isotopic compositions of carbon and oxygen are studied in different (rhodochrosite, calcareous-rhodochrosite, and chlorite–rhodochrosite) types of manganese carbonate ores from the Usa deposit (Kuznetskii Alatau). The 13C value varies from –18.4 to –0.7, while the 18O value ranges between 18.4 and 23.0. Host rocks are characterized by higher values of 13C (–1.9 to 1.0) and 18O (21.2 to 24.3). The obtained isotope data suggest an active participation of oxidized organic carbon in the formation of manganese carbonates. Manganese carbonate ores of the deposit are probably related to metasomatic processes.  相似文献   

8.
Comparison between two types of multifractal modeling   总被引:1,自引:0,他引:1  
The interrelationships between two previously developed multifractal models are discussed. These are the Evertsz-Mandelbrot model developed on the basis of the multifractal spectrum f(), and the Schertzer-Lovejoy model based on the codimension function C() where and represent Hölder exponent and field order, respectively. It is shown how these two models are interrelated: they are identical for values of within the range D–(0)D–min. where D is the Euclidean dimension. For D–maxD–(0), however, f() remains a continuous function of whereas C() assumes constant value. In this respect, the fractal spectrum f() can provide more information about the multifractal measure than the codimension function C(). The properties of the two models are illustrated by application to the binomial multiplicative cascade model.  相似文献   

9.
A basanitoid flow of Miocene age, exposed near the West Kettle River, 25 km southeast of Kelowna, British Columbia, contains abundant ultramafic and mafic nodules. The subangular nodules are 1–20 cm across and typically show granular textures. A study of 250 nodules indicates that spinel lherzolite (60%) is the dominant type with subordinate olivine websterite (10%), websterite (7%), clinopyroxenite (4%), wehrlite (4%), pyroxene gabbro (4%), dunite (2%), harzburgite (1%) and granitic rocks (8%). Ultramafic nodules are of two types. Most of the wehrlites and clinopyroxenites belong to the black pyroxene (aluminous clinopyroxene) series, whereas the other clinopyroxene-bearing nodules belong to the green pyroxene (chromian diopside) series. Some spinel lherzolite nodules have distinctive pyroxene- and olivine-rich bands. Microprobe analyses of the constituent minerals of more than thirty nodules from the green pyroxene series indicate that grain to grain variations within individual nodules are small even when banding is present. Olivine, orthopyroxene, clinopyroxene and spinel in spinel lherzolite have average compositions of Fo90, En90, Wo47Fs5En48, Cr/(Cr+ Al+Fe3)=0.1 and Mg/(Mg+Fe2+)=0.8. Equilibration temperatures, which were calculated using the two pyroxene geothermometer of Wells (1977), range between 920–980° C. Based on published phase stability experiments, pressures of equilibration are between 10–18 kbar. In summary, the upper mantle beneath southern British Columbia is dominated by spinel lherzolite but contains some banding on a scale of cm to meters. The temperature in the upper mantle is 950° C at a depth of 30–60 km.On leave from the Geological Institute, University of Tokyo, Japan  相似文献   

10.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

11.
Monomineralic domains of chlorite, corundum and Cr muscovite coexist over a kilometer scale within ultramafic schists of the Harare greenstone belt (2.73 Ga). This exotic lithological association includes the conjunction of some of the most aluminous (Al2O388 wt%) and potassic (K2O10 wt%) rocks known. The paragenetic sequence developed from chloritecorundumcorundum+ diaspore: Cr muscovite variably overprinted both the corundum and chloritite domains. Terminal stages were marked by sporadic production of andalusite+quartz, and finally margarite.Chlorite (Cr2O3=0.31–2.65 wt%), corundum (0.79–2.66 wt%), and diaspore are all Cr-rich varieties. The chromian (Cr2O33.86 wt%) paragonitic muscovite incorporates up to 17% of the paragonite molecule, and significant Mg and Fe substitutions.The suite of rocks are characterized by chondritic Ti/Zr ratios (–x=107), systematically enhanced Cr (up to 14000 ppm) and Ni (up to 1200 ppm) abundances, low levels of the alteration-insensitive incompatible elements Th, Ta, Nb. Chlorite, corundum and Cr muscovite represent progressive stages in the incremental metasomatic alteration of a komatiite precursor. Mass balance calculations, constrained by the isochemical behaviour of Ti, Zr and Hf reveal that the komatiite chloritite transformation involved volumetric contractions of 60% by hydrothermal leaching of Si, Fe, Mn, Ca and Na. Reaction of chloritite to corundum involved further volumetric reductions of 50% due to essentially quantitative loss of Si, Fe, Mn, Mg, K and Ca. Conversion of corundum to muscovite required additions of Si, K, Fe, Mn, Mg, Rb and Ba at 50–200% dilation. K, Rb, Ba, Li and Cs are enriched by up to 2×103 over background abundances in ultramafic rocks, and the suite is also enriched in B, Se, Te, Bi, As, Sb and Au. REE were extensively leached during chloritite-corundum stages, whereas LREE additions accompany development of muscovite. Ti, Zr, Hf and Al were all concentrated by selective leaching of mobile components, but absolute additions of Al accompanied development of the corundum domains due to Al precipitation in response to depressurization.Corundum ( 18O=3.5–4.8), muscovite ( 18O=6.7–7.5) and chlorite (4.5–5.6) are isotopically uniform and formed at 380–520° C from a fluid where 18O=5.6–6.9. The corundum is 18O depleted relative to either igneous or anatectic counterparts (Ocor=7.6–8.2), or to gibbsitic laterites ( 18O=12–17).Previous genetic schemes involving metamorphism of exhalites or bauxite, or Si-undersaturation of magmas, can all be ruled out from the data. The chloritite, corundum, Cr-muscovite association represents sequential alteration products of ultramafic rocks by high temperature, low pH hydrothermal solutions carrying LIL-elements, and in which excursions of pH and/or degree of quartz undersaturation account for the mineralogical transitions. A deep level acid epithermal system, or fluid advection across steep inverted thermal gradients in a thrust regime could account for required hydrothermal conditions.  相似文献   

12.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

13.
Carbon and oxygen isotope analyses were made of representative samples of calcite and quartz from the carbonate deposits in the Tolfa Mountains mining district. Measurements were also made of hydrogen isotope compositions, filling temperatures and salinities of fluid inclusions in these minerals. There are three stages of mineralization at Tolfa. In stage I, characterized by calc-silicate hornfels, the carbonates have relatively high 18O values of 14.5 to 21.6 suggesting a rather low water/rock ratio. 13C values of –0.3 to 2.1 indicate that appreciable decarbonation or introduction of deep-seated carbon did not occur. Stage II is marked by phanerocrystalline carbonates; 18O values of 13.1 to 20.0 and 13C values of 0.7 to 5.0 identify them as hydrothermal veins rather than marbles. D values of –56 to –50 for inclusion fluids suggest a possible magmatic component to the hydrothermal fluid. Filling temperatures of coarse-grained samples of Calcite II are 309° to 362° C with a salinity range of 5.3 to 7.1 weight percent NaCl. Calculated 18O values of 11–12 for these fluids are again indicative of low water/rock ratios. The sparry calcites of stage III have 18O and 13C values of 8.1 to 12.9 and –1.7 to 3.2, respectively. D values of inclusion fluids are –40 to –33, clearly heavier than in earlier stages and similar to values of modern local ground waters. A salinity measurement of <0.1 weight percent NaCl in a sample of Calcite III is compatible with a relatively unaltered ground water origin for this fluid. Precipitation of the sparry calcite took place at much lower temperatures, around 160° C. For quartz, 18O values of 9.3 to 12.4 and D values for inclusions of –53 to –28 are consistent with its late occurrence and paragenetic link with associated carbonates.  相似文献   

14.
A method for chemical separation of Lu and Hf from rock, meteorite and mineral samples is described, together with a much improved mass spectrometric running technique for Hf. This allows (i) geo- and cosmochronology using the176Lu→176Hf+β? decay scheme, and (ii) geochemical studies of planetary processes in the earth and moon.Chemical yields for the three-stage ion-exchange column procedure average 90% for Hf. Chemical blanks are <0.2 ng for Lu and Hf. From 1 μg of Hf, a total ion current of 0.5×10?11 Ampere can be maintained for 3–5 h, yielding 0.01–0.03% precision on the ratio176Hf/177Hf. Normalisation to179Hf/177Hf=0.7325 is used.Extensive results for the Johnson Matthey Hf standard JMC 475 are presented, and this sample is urged as an international mass spectrometric standard; suitable aliquots, prepared from a single batch of JMC 475, are available from Denver.Lu-Hf analyses of the standard rocks BCR-1 and JB-1 are given. The potential of the Lu-Hf method in isotope geochemistry is assessed.  相似文献   

15.
Stable isotope compositions have been determined for serpentinites from between Davos (Arosa-Platta nappe, Switzerland) and the Valmalenco (Italy). D and 18O values (–120 to –60 and 6–10, respectively) in the Arosa-Platta nappe indicate that serpentinization took place on the continent at relatively low temperatures in the presence of limited amounts of metamorphic fluids that contained a component of meteoric water. One sample of chrysotile has a 18O value of 13 providing evidence of high W/R ratios and low formation temperature of lizardite-chrysotile in this area. In contrast, relatively high D values (–42 to –34) and low 18O values (4.4–7.4) for serpentine in the eastern part of the Valmalenco suggest a serpentinization process that took place at moderate temperatures in fluids that were dominated by ocean water. The antigorite in the Valmalenco is the first reported example of continental antigorite with an ocean water signature. An amphibole sample from a metasomatically overprinted contact zone to metasediments (D=-36) indicates that the metasomatic event also took place in the presence of ocean water. Lower D values (–93 to –60) of serpentines in the western part of the Valmalenco suggest a different alteration history possibly influenced by fluids associated with contact metamorphism. Low water/rock ratios during regional metamorphism (and metasomatism) have to be assumed for both regions.  相似文献   

16.
A detailed isotopic study of minerals and whole rocks from the Cretaceous Oka complex, Quebec, Canada, shows a very small variation in initial Nd and Sr isotopic compositions. Assuming an age of 109 Ma for the complex, apatite, calcite, garnet, melilite, monticellite, olivine and pyroxene and whole rocks yield a range for initial 87Sr/86Sr of 0.70323–0.70333; and for initial 143Nd/144Nd of 0.51271–0.51284 ( SR(T)= –14.8 to –16.2; Nd(T)=+4.1 to +6.6). The negative SR and positive Nd indicate derivation of the Nd and Sr from a source with a time-integrated depletion in the large-ion lithophile (LIL) elements. This agrees with data from other Canadian carbonatites and confirms that a large part of the Canadian Shield is underlain by a source region depleted in the LIL elements. The new data from Oka suggest that the depleted source may have remained coupled to the continental crust until recent time.  相似文献   

17.
Soil samples collected from various places in and around Mysore were analyzed for the total trace elements such as Fe, Mn, Cu, Zn, Pb, and Cd. The results of the analysis indicate that the concentration of lead and cadmium in soils is below 2.5 g ml–1 and 0.2 g ml–1, respectively, which are the minimum detection levels, whereas the concentration of iron, manganese, copper, and zinc in most of the samples is within the global average ranges of 3%, 500–1000 g g–1, 15–40 g g–1, and 50–100 g g–1, respectively. The investigated area has the presence of gneisses and schists, in which partly there are igneous intrusions and pegmatitic intrusions. There are amphibolite enclaves in gneisses that account for the higher concentration of trace elements. The lower concentration may be attributed to the presence of silicic type of rock.  相似文献   

18.
In-situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press of SPring-8 on stishovite SiO2 and pressure-volume-temperature data were collected at up to 22.5 GPa and 1,073 K, which corresponds to the pressure conditions of the base of the mantle transition zone. The analysis of room-temperature data yielded V0=46.56(1) Å3, KT 0=296(5) GPa and K T =4.2(4), and these properties were consistent with the subsequent thermal equation of state (EOS) analyses. A fit of the present data to high-temperature Birch-Murnaghan EOS yielded (KT /T) P =–0.046(5) GPa K–1 and = a + bT with values of a =1.26(11)×10–5 K–1 and b =1.29(17)×10–8 K–2. A fit to the thermal pressure EOS gives 0=1.62(9)×10–5 K–1, ( K T / T) V =–0.027(4) GPa K–1 and (2P /T 2) V =27(5)×10–7 GPa K–2. The lattice dynamical approach by Mie-Grüneisen-Debye EOS yielded 0=1.33(6), q =6.1(8) and 0=1160(120) K. The strong volume dependence of the thermal pressure of stishovite was revealed by the analysis of present data, which was not detectable by the previous high-temperature data at lower pressures, and this yields ( K T / T) V 0 and q 1. The analyses for the fictive volume for a and c axes show that relative stiffness of c axis to a axis is similar both on compression and thermal expansion. Present EOS enables the accurate estimate of density of SiO2 in the deep mantle conditions.  相似文献   

19.
The Miocene Farellones Formation in central Chile (32°-35°S) is one of several up to 3000 mthick Tertiary volcanic sequences in the Central Andes with ash flows and intercalations of lacustrine sediments in their lower part, and intermediate to basic lavas and rhyolitic domes in their upper part. The Farellones rocks were probably deposited in a volcano-tectonic graben formed through a series of caldera collapses. This is suggested by (a) the fact that the formation frequently is delimited by normal faults towards which the subhorizontal strata pinch out and become upraised, indicating deposition during subsidence, (b) the huge volume of erupted acid magma and (c) a high paleothermal gradient of geothermal field type. Similar Tertiary volcanic sequences in northern Chile and central Peru probably also formed by eruptions in a caldera-graben setting. This setting and the geothermal field type of alteration make these sequences good prospecting targets for epithermal preciousmetal deposits.
Zusammenfassung Die miozäne Farellones-Formation im zentralen Chile (32°–35°S) ist eine von mehreren bis zu 3000 m mächtigen, tertiären vulkanischen Abfolgen der zentralen Anden, mit Ignimbriten und Zwischenlagerungen von lakustrinen Sedimenten im unteren, und mit intermediären bis basischen Laven und rhyolitischen Staukuppen im oberen Teil der Abfolgen. Die Gesteine der Farellones-Formation wurden wahrscheinlich in einem vulkano-tektonischen, durch eine Reihe von Caldera-Absenkungen entstandenen Graben abgelagert. Für diese Tatsache sprechen (a) häufige Begrenzung der Formation durch Normalverwerfungen gegen welche die subhorizontalen Schichten ausdünnen und aufgebogen werden, was Ablagerung während der Absenkung andeutet, (b) das große Volumen der sauren Vulkanite und (c) der hohe paläothermale Gradient von geothermalem Charakter. Ähnlich ausgebildete, tertiäre vulkanische Abfolgen im nördlichen Chile und zentralen Peru sind vermutlich ebenfalls durch Eruptionen in Caldera-Gräben gebildet worden. Aufgrund der tektonischen Ausbildung und des geothermalen Umwandlungstyp dürften diese Abfolgen für die Prospektion nach epithermalen Vorkommen von Edelmetallen von besonderem Interesse sein.

Resumen La Formación Farellones de Chile central (32°–35°S), deedadmiocena, es una de las muchas secuencias terciarias de más de 3000 m de espesor que existen en la alta cordillera de los Andes Centrales que contiene depósitos de flujos piroclásticos e intercalaciones de sedimentos lacustres en su parte inferior, y lavas intermedias a básicas y domos riolíticos en su parte superior. Las rocas de la Formación Farellones se depositaron, probablemente, en un graben volcano-tectónico formado a través de una serie de colapsos de calderas. Esta interpretación se basa en: (a) la frecuente delimitación de la formación por fallas normales contra las cuales los estratos subhorizontales se adelgazany se levantan, indicando depositación durante subsidencia, (b) el gran volumen de magma ácido extruido y (c) un gradiente paleotermal alto de tipo campo geotérmico. En el norte de Chile y en Perú central existen secuencias terciarias similares depositadas probablemente también en depresiones volcano — tectónicas tipo caldera — graben. Este marco tectónico y la alteración de tipo campo geotérmico, hace que éstas secuencias sean buenos blancos de prospección para depósitos epitermales de metales preciosos.

Farellones (32° – 35° ) , 3000 ., , . , , - , . : ) , , ; ) ; ) . , , , , . .. , .
  相似文献   

20.
The Romeu Pluton (NE Portugal) comprises two principal leucogranite varieties: the Cernadela Granite, a biotite-bearing, slightly porphyritic leucogranite is crosscut by the Romeu Granite, a pure muscovite granite. The age of these granites is 296±7 Ma (87Sr/86Sr=0.727±0.006); the age difference between the two granites lies within the margin of error. Both granites are extremely enriched in Rb (Romeu Granite up to 1200 ppm) and strongly depleted in Sr (less than 5 ppm), Ba, Zr, Ti, La, Ce, and Th. Mild enrichment is shown by P, Sn, and U. The resulting element profile is very characteristic for these and other Iberian leucogranites. Although these granites show S-type characteristics, such as peraluminicity and a high initial Sr isotope ratio, the geochemical evidence supports an origin by fractionation of a granite magma.
Zusammenfassung Der Romeupluton (NE-Portugal) besteht hauptsächlich aus zwei Granitvarietäten, dem Cernadelagranit, einem biotithaltigen, leicht porphyrischen Leukogranit, der vom Romeugranit, einem reinen Leukogranit, durchschlagen wird. Das Alter des Plutons beträgt 296±7 Ma (87Sr/86Sr=0.727±0.006); der Altersunterschied zwischen beiden Granitvarietäten liegt innerhalb der Fehlergrenze. Beide Granite sind extrem an Rb (Romeutyp bis mehr als 1200 ppm) angereichert und stark an Sr (weniger als 5 ppm), Ba, Zr, Ti, La, Ce und Th abgereichert. Leichte Anreicherung zeigen P, Sn und U. Das resultierende Elementspektrum ist sehr charakteristisch für diese und andere iberische Leukogranite. Obwohl diese Granite S-Typ-Charakeristika wie Peraluminität und hohes initiales Sr-Isotopen-Verhältnis zeigen, lassen geochemische Befunde auf eine Genese durch Fraktionierung aus einem Granitmagma schließen.

Résumé Le pluton de Romeu (nord-est du Portugal) est composé de deux variétés principales de leucogranite: le granite de Cernadela, un leucogranite à biotite légèrement porphyrique, intrudé par le granite de Romeu, un leucogranite pur à muscovite. Le pluton est âgé de 296±7 Ma (rapport initial87Sr/86Sr de 0,727±0,006); la différence d'âge entre les deux variété de granite est inférieure à la marge d'erreur. Les deux granites sont extrêmement enrichis en Rb (le type Romeu de plus de 1.200 ppm) et fortement appauvris en Sr (moins que 5 ppm), Ba, Zr, Ti, La, Ce et Th. Le P, le Sn et l'U montrent un faible enrichissement. Le spectre des éléments qui en résulte est très caractéristique de ces granites, ainsi que d'autres leucogranites ibériques. Bien que ces granites présentent des caractéristiques de type S (peralumineux, rapport initial élevé), les résultats géochimiques indiquent une genèse par fractionnement d'un magma granitique.

Romeu - : Cernadela, , Romeu, . 295 +7 Ma (87Sr/86Sr=0,727±0,006); . / Romeu 1200 / / 5 / , , , , , . , . . S, ., , .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号