首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The steady-state, homogeneous and barotropic equations of motion within the planetary boundary layer are solved with the assumption that the coefficient of eddy viscosity varies as K(Z) = K O(1–Z/h) p , where h is the height of the bounday layer and p is a parameter which depends on atmospheric stability. The solutions compare favourably with observed velocity profiles based on the Wangara data.  相似文献   

2.
In this paper, the third-order derivative of velocity with respect to height is included in the traditional motion equations of the neutral PBL. The nonlinear equations are solved numerically to obtain the vertical distribution of wind in the PBL and some PBL characteristic parameters. Reasonable simulations of the Leipzig wind profile using these parameters show the success of this kind of nonlocal closure in a real PBL simulation.  相似文献   

3.
A long-standing problem in large-eddy simulations (LES) of the planetary boundary layer (PBL) is that the mean wind and temperature profiles differ from the Monin-Obukhov similarity forms in the surface layer. This shortcoming of LES has been attributed to poor grid resolution and inadequate sub-grid-scale (SGS) modeling. We study this deficiency in PBL LES solutions calculated over a range of shear and buoyancy forcing conditions. The discrepancy from similarity forms becomes larger with increasing shear and smaller buoyancy forcing, and persists even with substantial horizontal grid refinement. With strong buoyancy forcing, however, the error is negligible.In order to achieve better agreement between LES and similarity forms in the surface layer, a two-part SGS eddy-viscosity model is proposed. The model preserves the usual SGS turbulent kinetic energy formulation for the SGS eddy viscosity, but it explicitly includes a contribution from the mean flow and a reduction of the contributions from the turbulent fluctuations near the surface. Solutions with the new model yield increased fluctuation amplitudes near the surface and better correspondence with similarity forms out to a distance of 0.1–0.2 times the PBL depth, i.e., a typical surface-layer depth. These results are also found to be independent of grid anisotropy. The new model is simple to implement and computationally inexpensive.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
A one-dimensional penetrative plume model has been constructed to parameterize the process of deep convection in ocean general circulation models (OGCMs). This research is motivated by the need for OGCMs to better model the production of deep and intermediate water masses. The parameterization scheme takes the temperature and salinity profiles of OGCM grid boxes and simulates the subgrid-scale effects of convection using a one-dimensional parcel model. The model moves water parcels from the surface layer down to their level of neutral buoyancy, simulating the effect of convective plumes. While in transit, the plumes exchange water with the surrounding environment; however, the bulk of the plume water mass is deposited at e level of neutral buoyancy. Weak upwelling around the plumes is included to maintain an overall mass balance. The process continues until the negative buoyant energy of the one-dimensional vertical column is minimized. The parameterized plume entrainment rate, which plays a central role in the parameterization, is calculated using modified equations based on the physics of entraining buoyant plumes. This scheme differs from the convective adjustment techniques currently used in OGCMs, because the parcels penetrate downward with the appropriate degree of mixing until they reach their level of neutral stability.  相似文献   

5.
Nondimensional parameters characteristic of the outer part of the planetary boundary layer have been determined by fitting a simple, Ekman-type theory to a number of averaged, observed velocity distributions, using the Wangara data of Clarke et al. (1971). The theoretical model is based on constant eddy viscosity in the outer layer and a linear variation of the geostrophic wind with height. At the lower boundary of the outer layer, the condition is applied that stress and velocity are parallel. This yields an equation for the cross-isobar angle as a function of drag coefficient, depth coefficient and nondimensional thermal wind.The data could be sorted into three well-defined, distinct groups, each characterized by a more or less constant value of the depth coefficient. The group with the lowest value of this parameter contains most of the nighttime data, the middle group the remaining nighttime data and most of the daytime ones, and the group with the largest depth, daytime data with cold air advection. The difference between the lowest and highest depth coefficients found here is about a factor of three.Within each group separately, the theoretically derived cross-isobar angle agrees remarkably well with the observed one, as a function of thermal wind.  相似文献   

6.
A method for solving the planetary boundary-layer equations   总被引:1,自引:0,他引:1  
A method for solving the nonlinear three-dimensional steady-state equations which govern planetary boundary layer flow is described. The method is applicable to air motions over terrain with horizontally varying surface roughness, temperature and moisture. It can also be applied to a physical system consisting of the air and the sea (or earth) boundary layers taken together. Examples of calculations for selected cases of terrain variations are presented. Convergence of the method has been assessed by determining the degree to which the solutions satisfy the set of equations.The results of the calculations show that the method produces qualitatively realistic distributions of the different meteorological variables.Contribution No. 1251 from the University of Miami, Rosenstiel School of Marine and Atmospheric Sciences.  相似文献   

7.
A series of nearly daily ozone vertical profiles obtained at station T-3 on Fletcher's Ice Island (85°N, 90°W) during the period January-March 1971 shows several significant ozone intrusions into the troposphere. These intrusions are not only associated with enhanced ozone amounts in the stratosphere but also require tropopause folding events to transport ozone into the troposphere. These folds in the Arctic tropopause appear to be capable of contributing significantly to the ozone budget of the Arctic troposphere during the late winter and spring seasons. The importance of tropopause folding for bringing ozone into the troposphere seen in the daily ozone profiles confirms the results found in the Arctic Gas and Aerosol Sampling Program aircraft flights.  相似文献   

8.
Exchange coefficients and mixing lengths under stable stratification have been studied through measurements of mean wind velocity and temperature in the nocturnal boundary layer. For values of the gradient Richardson number lower than 0.15, our measurements fit well the relation of Delage (1974). Beyond Ri = 0.15, the decrease of mixing length is much slower. So a new parameterization of turbulent exchanges is suggested. When introduced in a model of the nocturnal boundary layer, it results in a thickening of the turbulent and inversion layers.  相似文献   

9.
Detailed wind velocity profiles were obtained by means of a rocket-sonde technique to a height of about 700 m at a site in the Canadian Northwest Territories. Less detailed temperature observations were also made using a balloon sonde. The site was some 100 km east of the easternmost range of the Rocky Mountains. The observations took place in mid-February when the overall atmospheric static stability was considerable. The results showed the presence of an arctic, atmospheric ‘thermocline’ some 500 m above ground, which sloped up or down considerably, with the generators of isothermal surfaces usually parallel to the nearby mountains, in the manner of upwelled or downwelled thermoclines in the ocean near shore. There was often strong baroclinic flow parallel to the mountain range. Noticeable frictional effects were confined to a near-ground layer always less than 100 m and mostly no more than 10 m in height. An Ekman-type boundary layer could only be identified in about one-third of the velocity profiles. The non-dimensionalized depth coefficient of such layers was close to 0.1, the geostrophic drag coefficient about 2.5×10?4.  相似文献   

10.
针对WRF模式中行星边界层参数化过程中的不确定性,发展了一种针对行星边界层参数化过程的随机物理扰动方案(SPPBLPT),该方案针对行星边界层计算的温度、风场、水汽倾向项进行扰动.使用该方案、多行星边界层参数化方案、多参数扰动方案及针对WRF模式总倾向的随机物理过程扰动(SPPT)方案对2014年7月进行对比实验,发现...  相似文献   

11.
Sulfate-coated dust particles in the free troposphere over Japan   总被引:1,自引:0,他引:1  
Airborne aerosol collections were performed over Wakasa bay (36°00′N, 135°30′E) in March and Kumano open sea (34°00′N, 136°50′E) and Seto (35°10′N, 137°10′E) in July 2001 at altitudes between 1.0 and 5.8 km. The particles were individually analyzed using transmission electron microscopy (TEM). Relatively large mineral-dust (mostly clay) particles were abundant in the March samples. They also dominated in July in the mid-troposphere higher than 4 km altitude, whereas sea salt and ammonium sulfate were more abundant at lower altitudes. Ca-coated grid samples show many traces of aqueous sulfate droplets. The proportions of former sulfate droplets to the total collected particles apparently increased with increasing relative humidity at the time of sampling. TEM analysis revealed that a significant fraction of these former droplets enclose mineral-dust particles as well as sea salt, soot, and fly ash. Some enclose mixtures of mineral-dust, sea-salt, soot, and fly ash particles. The results provide evidence that mineral dust from the Asian continent could acquire coatings of sulfate while being transported in the free troposphere. The mineral-dust particles probably acquired the sulfate coatings either through heterogeneous uptake of gaseous SO2 and subsequent oxidation or through coagulation with cloud or fog droplets. The presence of the mixed particles in sulfate droplets also indicates that aggregation of particles of different origins occurred through cloud processing. Such sulfate-coated dust particles would affect cloud formation, precipitation, and chemistry of the free troposphere.  相似文献   

12.
An improved first-order closure approximation is developed for the non-local transilient turbulence parameterization. Instead of using Richardson numbers, this improved approach uses non-local approximations to the shear, buoyancy, storage, and dissipation terms of the turbulence kinetic energy equation to parameterize the turbulent mixing potential between every combination of grid points in a 1-D model of the atmosphere. The original (n 2 – n) degrees of freedom associated with the independent transilient matrix coefficients for a model of n grid points is thus reduced to four degrees of freedom associated with the four free parameters.The resulting parameterization is applied to three consecutive case-study days of boundary-layer data acquired near the Cabauw tower in The Netherlands. The first day is used for sensitivity tests to select the best values of the four free parameters. The remaining two days, used as independent tests, demonstrate that realistic entraining mixed layers and nocturnal boundary layers form in the model without explicitly parameterizing such boundary layers. Simulations are also presented for two idealized cases: dry stratocumulus-induced convection and a neutral boundary layer.Work performed while a visiting scientist at the Royal Netherlands Meteorological Institute.  相似文献   

13.
Organic matter in tropospheric aerosols is derived from two major sources and is admixed depending on the geographic area. These sources are biogenic detritus and anthropogenic emissions. The biogenic materials in the solvent-extractable organic matter are comprised predominantly of higher plant waxes, with lesser amounts of resin and microbial detritus and the anthropogenic components are primarily vehicular emissions (e.g. oils, soot, etc.) and input from combustion (e.g. charcoal, thermally-altered biogenic matter, etc.). Both biogenic detritus and anthropogenic emissions contain organic compounds (C12–C40+), which can be identified with unique and distinguishable distribution patterns. Molecular composition analysis has been applied to such extracts after suitable chemical separation into subfractions (i.e. hydrocarbons, ketones, aldehydes, carboxylic acids, alcohols, and wax esters). Both homologous compound series and specific natural products (e.g. phytosterols, terpenes, etc.) are identified as molecular markers.Aerosols from rural and remote areas in the western United States, South America, Nigeria and Australia have been analyzed and all contained predominantly plant waxes. The loadings of hydrocarbons ranged approximately from 10–1400 ng/m3 of air, of fatty acids from 10–450 ng/m3 and of fatty alcohols from 10–1650 ng/m3. These higher molecular weight lipids primarily from flora comprise a major component of the organic carbon in rural and remote aerosols. They are thus important indicators for regional biogenic sources in the global cycling of organic carbon.Presented in part at the International Symposium on Biosphere-Atmosphere Exchange, Mainz, E.R. Germany, March 16–22, 1986, for Part IV see Simoneit et al. (1988) Atmos. Environ. 22, 983–1004.  相似文献   

14.
A method for performing nested grid calculations with a large-eddy simulation code is described. A common numerical method is used for all meshes, and the grid architecture consists of a single outer or coarse grid, and nested or fine grids, which overlap in some common region. Inter-grid communication matches the velocity, pressure and potential temperature fields in the overlap region. Resolved and sub-grid scale (SGS) turbulent fluxes and kinetic energy on the fine grid are averaged to the coarse grid using a conservation rule equivalent to Germano's identity used to develop dynamic SGS models.Simulations of a slightly convective, strong shear planetary boundary layer were carried out with varying surface-layer resolutions. Grid refinements in the (x, y, z) directions of up to (5, 5, 2) times were employed. Two-way interaction solutions on the coarse and fine meshes are successfully matched in the overlap region on an instantaneous basis, and the turbulent motions on the fine grid blend smoothly into the coarse grid across the grid interface. With surface-layer grid nesting, significant increases in resolved eddy fluxes and variances are found. The energy-scale content of the vertical velocity, and hence vertical turbulent fluxes, appear to be most influenced by increased grid resolution. Vertical velocity spectra show that the dominant scale shifts towards higher wavenumbers (smaller scales) and the magnitude of the peak energy is increased by more than a factor of 3 with finer resolution. Outside of the nested region the average heat and momentum fluxes and spectra are slightly influenced by the fine resolution in the surface layer. From these results we conclude that fine resolution is required to resolve the details of the turbulent motions in the surface layer. At the same time, however, increased resolution in the surface layer does not appreciably alter the ensemble statistics of the resolved and SGS motions outside of the nested region.  相似文献   

15.
The planetary boundary layer (PBL) differs from other simple boundary layers in that it forms on the earth's rotating surface. While the effect of the earth's rotation on the mean wind vector of the PBL is well known, the rotational influence on PBL turbulence is not yet established. In the present work, the latter effect is investigated using numerical models that account for the influence of the earth's rotation on the turbulence. It is found that the earth's rotational influence on PBL turbulence is negligible, and therefore does not need to be included in turbulence models used to simulate PBL flows.  相似文献   

16.
WRF模式边界层参数化方案对西南低涡模拟的影响   总被引:4,自引:3,他引:1  
刘晓冉  李国平 《气象科学》2014,34(2):162-170
应用中尺度数值模式WRF(V3.3版本)选用4种行星边界层参数化方案(YSU、ACM2、MYJ和NOPBL)对2011年6月16—18日造成强降水的西南低涡过程进行敏感性试验,对比分析不同边界层参数化方案对西南低涡过程模拟的影响。模拟结果表明:4种边界层参数化方案均能较好地模拟出西南低涡以及暴雨带的东移,其中YSU方案对低涡路径、强度及降水的总体模拟效果最好。YSU和ACM2方案,与MYJ和NOPBL方案相比,模拟的低涡中心区域正涡度柱和垂直上升运动较强,达到的垂直高度更高。造成这种差异的主要原因是对边界层上的夹卷效应以及垂直混合作用考虑的不同。不考虑边界层作用的NOPBL方案模拟的地表风速异常偏大,造成地表热通量明显偏强、边界层高度偏高。YSU、ACM2和MYJ 3种方案模拟的边界层高度和热通量的日变化比较一致,夜间基本维持少变,白天变化大,其中MYJ模拟的边界层高度和热通量较大,ACM2模拟的较小。地表风速是造成热量输送以及边界层高度模拟差异的主要因子。  相似文献   

17.
Predictions of the surface drag in turbulent boundary-layer flow over two-dimensional sinusoidal topography from various numerical models are compared. For simple 2D terrain, the model results show that the drag increases associated with topography are essentially proportional to (slope)2 up to the steepness at which the flow separates. For the purposes of boundary-layer parameterisation within larger-scale models, we propose a representation of the effects of simple 2D topography via an effective roughness length, z 0 eff. The form of the varation of z 0 eff with terrain slope and topographic wavelength is established for small slopes from the model results and a semi-empirical formula is proposed.  相似文献   

18.
The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, 2KTL, an accelerative relative diffusion region exists, i.e., σy∝t3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given byσy=2KTL. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests.  相似文献   

19.
A model of internal boundary-layer development   总被引:3,自引:2,他引:3  
A slab model of the boundary layer was used to study the dynamics of the internal boundary layer associated with changes in surface temperature. The usual numerical procedure involving finite differences was avoided by solving the governing equations in a Lagrangian framework. The results of the modelling study showed that mixed-layer growth was enhanced by: (a) an increase in surface roughness; (b) an increase in the surface temperature change; and (c) a decrease in the horizontal velocity. It was found that the vertical velocity induced by variations in the horizontal velocity could play an important role in controlling the expansion of the mixed layer.The second part of the study involved the formulation of a model by simplifying the governing equations. The analytical solution obtained from the model compared favourably with the results of the numerical model. Furthermore, the analytical expression for the mixed-layer height was virtually identical to that presented by Raynor et al. (1974) to fit their observational data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号