首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了考察试样尺寸和预制裂缝长度对岩石断裂韧度测试值的影响,采用4种圆盘半径分别为25.0、37.5、50.0、75.0 mm,预制裂缝长度与圆盘试样半径比值(无量纲裂缝长度)在0.3~0.7范围内的中心直裂纹半圆盘石灰岩试样(NSCB)进行了三点弯曲断裂试验。结果表明:NSCB试样的破坏过程表现出明显的"脆性"破坏特征。与预制裂缝长度相比,试样尺寸对峰值载荷和载荷-位移曲线的形态影响更显著;随着试样尺寸的增加,试样的断裂韧度测试值不断增加,增加幅度随着预制裂缝长度的增加而加剧;当试样尺寸一定时,随着无量纲裂缝长度的增加,断裂韧度测试值有一定程度降低;为减小尺寸效应的影响,建议采用圆盘半径大于37.5 mm,无量纲预制裂缝长度范围在0.4~0.6内的NSCB试样测试岩石的断裂韧度。所得结果为推广NSCB试样国际建议方法及准确测试岩石的断裂韧度提供了一定的参考。  相似文献   

2.
为了考察试样尺寸和预制裂缝长度对岩石断裂韧度测试值的影响,采用四种圆盘半径分别为25mm、37.5mm、50mm、75mm,预制裂缝长度与圆盘试样半径比值(无量纲裂缝长度)在0.3~0.7范围内的中心直裂纹半圆盘石灰岩试样(NSCB)进行了三点弯曲断裂试验。结果表明:NSCB试样的破坏过程表现出明显的“脆性”破坏特征,与预制裂缝长度相比,试样尺寸对峰值载荷和载荷-变形曲线的形态影响更显著;随着试样尺寸的增加,试样的断裂韧度测试值不断增加,增加幅度随着预制裂缝长度的增加而“加剧”;当试样尺寸一定时,随着无量纲裂缝长度的增加,断裂韧度测试值有一定程度降低;为减小尺寸效应的影响,建议采用圆盘半径大于37.5mm,无量纲预制裂缝长度范围在0.4~0.6内的NSCB试样测试岩石的断裂韧度。所得结果为推广NSCB试样国际建议方法及准确测试岩石的断裂韧度提供了一定的参考。  相似文献   

3.
为了考察试样尺寸和预制裂缝长度对岩石断裂韧度测试值的影响,采用四种圆盘半径分别为25mm、37.5mm、50mm、75mm,预制裂缝长度与圆盘试样半径比值(无量纲裂缝长度)在0.3~0.7范围内的中心直裂纹半圆盘石灰岩试样(NSCB)进行了三点弯曲断裂试验。结果表明:NSCB试样的破坏过程表现出明显的“脆性”破坏特征,与预制裂缝长度相比,试样尺寸对峰值载荷和载荷-变形曲线的形态影响更显著;随着试样尺寸的增加,试样的断裂韧度测试值不断增加,增加幅度随着预制裂缝长度的增加而“加剧”;当试样尺寸一定时,随着无量纲裂缝长度的增加,断裂韧度测试值有一定程度降低;为减小尺寸效应的影响,建议采用圆盘半径大于37.5mm,无量纲预制裂缝长度范围在0.4~0.6内的NSCB试样测试岩石的断裂韧度。所得结果为推广NSCB试样国际建议方法及准确测试岩石的断裂韧度提供了一定的参考。  相似文献   

4.
为选择岩石三点弯曲试验合适的预制裂缝方法和裂缝长度以获得相对准确可靠的岩石I型断裂韧度K_(IC),并了解岩石三点弯曲宏观断裂过程和细观断裂特征,采用线切割、锯片切割和水刀切割3种方法预制花岗岩和大理岩三点弯曲梁试样直切槽裂缝,以研究不同预制裂缝方法对岩石K_(IC)的影响,结合场发射扫描电镜比较了不同切割方法岩样的细观断裂特征,试验结果表明线切割方法对岩石K_(IC)测试结果的影响最小。另对含无量纲裂缝长度0.1、0.2、0.3、0.4和0.5的花岗岩及大理岩试样进行试验测得岩石K_(IC)随裂缝长度增加呈先增大后减小的趋势,建议使用a=0.3的裂缝长度进行试验以得到有代表性的岩石K_(IC)值。岩样破坏宏观上经历变形局部化带萌生、局部化带发展、裂纹起裂、最终扩展断裂的过程,声发射过程显示岩样破坏的脆性特征明显,裂缝开口位移与声发射累计曲线趋势一致,可视为试样内部破坏发展过程的宏观表征。  相似文献   

5.
采用国际岩石力学学会岩石断裂韧度建议测试方法(ISRM)[1]提出的V形切槽巴西圆盘试样(CCNBD),测试了一种泥质砂岩的I型断裂韧度值,给出了一套试样切割制备方案,从试验现象角度分析了该泥质砂岩的断裂力学特性,讨论了该试样类型的有效尺寸和断裂机制,并指出了该方法的特点和优劣性,得出如下结论:(1)该类岩石试样测得的I型断裂韧度值对CCNBD试样直径尺寸变化具有较大的敏感性,并且直径大于ISRM建议方法中最小有效直径(75 mm)的试样测试结果更为稳定;(2)CCNBD试样断裂机制表现为以拉张应力(间接拉伸)作用为主,兼有一定的韧带面内剪切作用的应力状态下I型裂纹扩展模式;(3)V形切槽巴西圆盘方法具有试样加工工艺简单、能承受较大临界载荷、测试的I型断裂韧度值较稳定等优点,但其没有考虑断裂过程区(FPZ)的非线性问题,建议对该方法进行非线性修正图解方案研究,以达到更准确测定岩石断裂韧度的目的。  相似文献   

6.
CCNBD断裂韧度试样的SIF新公式和在尺度律分析中的应用   总被引:6,自引:0,他引:6  
根据国际岩石力学学会于1995年推荐的一种测试岩石断裂韧度的新型试样-人字形切槽巴西圆盘试样,对其断裂韧度计算公式中的关键参数即无量纲应力强度因子(SIF)提出了一个改进的计算公式。采用分片合成方法结合有限元法对CCNBD试样的应力强度因子进行了宽范围标定,结果以表格的形式给出;并采用数据线性回归的方法,将标定结果以一个指数函数的形式给出。结果表明,与标定值相比,无量纲应力强度因子新公式的误差较小,并且囊括了CCNBD试样的较宽范围的尺寸,且查表使用方便,也为理论分析提供了条件。在此基础上,对岩石断裂韧度测试的尺度律进行了更进一步的探索,结果表明,利用新公式进行的尺度律分析是有效的。  相似文献   

7.
为了准确测试页岩的I型断裂韧度K_(IC),分别采用直切槽半圆盘试样(NSCB)和人字形切槽半圆盘试样(CCNSCB),在3种预制切槽布置模式(splitter、arrester、divider)下,开展三点弯曲加载实验。通过标准差和变异系数分析两类方法 K_(IC)测算值的离散性,并评价各自适用性。使用光学显微镜观察试件破裂后的裂纹扩展路径和破裂面断口形态。基于断裂力学理论,给出页岩试件粗糙起伏断口表面能计算公式,分析页岩试件实测值K_(IC)离散的原因,并用最小耗能原理解释裂缝在页岩试件扩展过程中形成粗糙断裂面的机理。对比分析两种试样类型测试的K_(IC)值,认为两种方法在切槽平行层理布置的情况下测算值离散程度一致,二者都适用;对于切槽垂直层理两种布置方式下NSCB试件更容易发生裂缝偏转,导致产生Ⅰ-Ⅱ复合型断裂,使试验失效;CCNSCB试件的韧带具有良好的裂缝扩展导向作用,某种程度上抵消了加载配置非对称性带来的不利影响,CCNSCB比NSCB测得的K_(IC)值离散性更小,更适用于各向异性页岩的K_(IC)测试。  相似文献   

8.
动载确定方法对岩石动态断裂韧度测试的影响   总被引:1,自引:0,他引:1  
张盛  李新文  杨向浩 《岩土力学》2013,34(9):2721-2726
为了考察不同方法确定的动态载荷对测试岩石动态断裂韧度的影响,在SHPB压杆系统上动态冲击直径80 mm的大理岩圆孔裂缝平台巴西圆盘,获得了弹性压杆上的应力波形,间接计算得到3种不同的作用在圆盘端部的动态载荷。将载荷输入ANSYS动态有限元模型中,求得了相应的动态应力强度因子,并根据试验-数值分析方法确定了岩石的动态断裂韧度测试值。结果表明,在加载速率约为4.0×104 MPa•m1/2/s的条件下,采用三波法确定的大理岩的平均动态断裂韧度为 3.92 MPa•m1/2,采用一波法比三波法计算的结果偏低11.22%,采用二波法比三波法计算的结果偏高20.15%,3种方法得到的结果差异较大。应力波在传播过程中,通过圆盘表面和预制裂缝面发生散射,部分能量不断发生释放是造成圆盘试件两端加载载荷不相等的主要原因。三波法是3种方法中比较理想的动态载荷确定方法,但需要考察试件的动态应力平衡性。  相似文献   

9.
断裂韧度试样CCNBD宽范围应力强度因子标定   总被引:6,自引:3,他引:3  
贾学明  王启智 《岩土力学》2003,24(6):907-912
国际岩石力学学会(ISRM)在1995年提出了一种新型岩石断裂韧度试样--人字形切槽巴西圆盘试样CCNBD,但是,其断裂韧度计算公式中的重要参数(即无量纲应力强度因子的标定)仍存在问题。采用一种新的分片合成方法并结合有限元法,参照ISRM给出的CCNBD试样的尺寸限制,对该范围试样的应力强度因子进行了宽范围的标定,以便在试验中能因地制宜地选用不同几何参数的CCNBD试样。结果表明:分片合成方法的计算值有很高的精度,不但减少了工作量,也使标定的无量纲应力强度因子比现有文献值更加准确、可靠。  相似文献   

10.
戴峰  魏明东  徐奴文  许媛  赵涛 《岩土力学》2016,37(11):3215-3223
国际岩石力学学会建议了4种岩石I型断裂韧度(KIC)测试方法。将建议方法的人字形切槽巴西圆盘试样与直切槽半圆盘试样结合,可以得到具有诸多优点的人字形切槽半圆盘(CCNSCB)三点弯曲试样。近年来,CCNSCB方法受到许多关注,然而,其渐进破坏过程却尚未进行有效的评估。为此,对其进行了数值研究,其内容包括:进行细观损伤力学模拟,直观展现CCNSCB试样渐进断裂过程;考虑不同支撑跨距与直径之比( )的影响,发现 愈大,愈加符合测试原理,建议 取0.8;采用有限元子模型技术对CCNSCB方法( 0.8)中计算KIC的关键参数-临界无量纲应力强度因子( )进行了宽范围标定,可供相关研究直接查取;细观损伤力学模拟峰值力对应的临界裂纹与有限元标定 对应的临界裂纹较为一致,证明CCNSCB方法测试原理的合理性,以及数值模拟与 标定结果的有效性。  相似文献   

11.
为了研究径向压缩下圆环试样孔壁处的应力特征,利用厚度为34 mm,外径为50 mm的完整圆盘及不同内径(8~30 mm)的圆环砂岩试样,在巴西劈裂试验中测量孔壁的应变变化,分析试样的力学特性。试验结果表明:圆环试样的峰值载荷随着内径的增大而逐渐减少。圆盘和内径较小的圆环试样达到峰值载荷时出现了失稳破坏,载荷迅速跌落:当内径大于 16 mm,圆环试样达到峰值载荷后,载荷略有下降,但是试样并没有出现失稳破坏,而是持续压缩一定时间后才破裂。圆环最弱部位拉应力不是材料参数,而是一个结构参数,且随圆环内径而变化,基于弹性理论的Hobbs公式不能用于计算岩石抗拉强度。孔壁岩石的破裂只能是达到拉伸变形极限才会破裂,不能以拉伸应力作为破坏指标。研究结果为理解岩石在压拉组合下的力学特征提供了参考。  相似文献   

12.
李一凡  董世明  华文 《岩土力学》2016,37(11):3191-3196
为了研究中心裂纹巴西圆盘试件在压缩载荷作用下T应力的解析计算方法,通过权函数法推导出集中载荷作用下T应力的显式表达式,进而得到分布载荷作用下的T应力表达式。与边界配位法进行对比,所得公式优点在于任意相对裂纹长度和任意加载角下的T应力值都能较容易的精确得到。进一步分析表明,分布载荷与集中载荷作用下T应力的偏差随着载荷分布角的增加而增加。集中载荷作用下,相对裂纹长度固定时,T应力随着加载角的增大而增大。中心裂纹巴西圆盘纯I型与纯II型断裂试验时,大多数情况下的T应力都为负值。T应力值对中心裂纹巴西圆盘测定断裂韧度试验有影响,想要通过使T应力为0来消除这种影响是很难达到目的的。  相似文献   

13.
李一凡  董世明  李念斌 《岩土力学》2016,37(Z1):645-650
平台巴西圆盘(CFBD)具有避免加载点处应力集中、保证破坏由预制裂纹尖端处起始的优点,成为研究脆性材料断裂性能的常用试件之一。最近的研究发现,T应力也会影响材料断裂性能,但平台巴西圆盘并没有计算T应力的解析公式。使用解析分析与有限元数值分析相结合的方法,对复合型加载条件下平台巴西圆盘试件的T应力进行了计算,并对误差进行了系统的分析。结果表明,在一定载荷分布角内相对裂纹长度 时,不管是纯I、纯II还是复合型加载条件下平台巴西圆盘计算的T应力都可以用中心裂纹巴西圆盘均布载荷下T应力计算公式来计算;T应力相对误差随着相对裂纹长度的增加而增加。  相似文献   

14.
戴峰  王启智 《岩土力学》2004,25(3):427-431
国际岩石力学学会(ISRM)在1995年提出一种新型的岩石断裂韧度试样--人字形切槽巴西圆盘试样(cracked chevron notched Brazilian disc--CCNBD),对该试样的一个重要力学参数即最小无量纲应力强度因子的标定,以前的分析和计算都没有考虑切槽宽度的影响。然而试样切槽的宽度受切割刀具厚度所限,不能为零。当试样较小时,切槽宽度则相对较大。通过三维边界元计算分析表明,切槽宽度越大,无量纲应力强度因子的标定值就越大;对于ISRM推荐的CCNBD标准试样,得出其最小无量纲因子值为0.954,这比ISRM给出对应值0.84要大13.6 %。同时,小裂纹应力强度因子曲线的变化趋势也发生了质的变化,这可能会导致实验的失败。推荐最小无量纲应力强度因子的标定采用考虑切槽的三维分析。  相似文献   

15.
李斌  黄达  马文著 《岩土力学》2020,41(3):858-868
层理弱面对层状岩石的力学特性影响较显著,为了研究层理面特性对岩石断裂力学特性的影响,开展了具有不同层理方向的砂岩试样三点弯试验,探讨了砂岩断裂韧度及断裂模式的各向异性。之后基于有限元中的黏聚单元建立了数值模型,采用数值模拟方法研究了层理面强度对各层理角度试样断裂力学行为的影响规律。结果表明:层理方向影响下砂岩的断裂韧度及模式存在各向异性;同一层理方向试样的断裂韧度随层理面强度的增大而增大,且试样的层理面与加载方向夹角越小,断裂韧度受层理面强度变化影响越明显;试样的断裂模式不仅与层理面强度有关,还受层理倾角的控制,层理面与加载方向夹角θ = 0o试样断裂模式基本不受层理面强度影响,θ = 30o试样主要沿层理面张拉或剪切破坏,且沿层理面的破裂长度随层理面强度的降低逐渐增大;层理面强度较大时,θ = 45o试样主要沿层理面张拉破坏,θ = 60o~90o试样主要以贯穿层理的张拉破坏为主;层理面强度较小时,θ = 45o~90o试样均以沿层理面的剪切破坏为主,其中θ = 45o试样沿层理剪切长度最大。另外,通过数值模拟结果分析了层理面强度及方向对试样的起裂角及裂纹扩展路径产生的影响。该研究成果可作为层状岩石断裂力学理论的有益补充。  相似文献   

16.
层理弱面对层状岩石的力学特性影响较显著,为了研究层理面特性对岩石断裂力学特性的影响,首先开展了具有不同层理方向的砂岩试样三点弯试验,探讨了砂岩断裂韧度及断裂模式的各向异性。之后基于有限元中的粘聚单元建立了数值模型,采用数值模拟方法研究了层理面强度对各层理角度试样断裂力学行为的影响规律。结果表明:层理方向影响下砂岩的断裂韧度及模式存在各向异性;同一层理方向试样的断裂韧度随层理面强度的增大而增大,且试样的层理面与加载方向夹角越小,断裂韧度受层理面强度变化影响越明显;试样的断裂模式不仅跟层理面强度有关,还受层理倾角的控制,层理面与加载方向夹角θ = 0°试样断裂模式基本不受层理面强度影响,θ = 30°试样主要沿层理面张拉或剪切破坏,且沿层理面的破裂长度随层理面强度的降低逐渐增大;层理面强度较大时,θ = 45°试样主要沿层理面张拉破坏,θ = 60°~90°试样主要以贯穿层理的张拉破坏为主;层理面强度较小时,θ = 45°~90°试样均以沿层理面的剪切破坏为主,其中θ = 45°试样沿层理剪切长度最大。另外,通过数值模拟结果分析了层理面强度及方向对试样的起裂角及裂纹扩展路径产生的影响。该研究成果可作为层状岩石断裂力学理论的有益补充。  相似文献   

17.
通过对冰煤在-30℃低温状态下的断裂韧度KIC的测试试验, 得出了在不同预制裂纹长度条件下冻结煤体的断裂韧度变化情况. 试验中制备了三点弯曲试样并制作了低温环境下的三点弯曲实验装置, 对冰煤的试样制备、试验装置、 KIC计算公式以及裂纹尖端塑性区的大小等断裂力学问题进行探讨, 并且对试样尺寸的有效性进行了验证. 结果表明, 断裂韧度KIC与裂纹深度a/W的变化方向相反, a/W越大, KIC越小, 此时裂纹越易开裂.  相似文献   

18.
实际工程中冻融循环作用下裂隙岩体损伤较为严重,研究其力学特性及损伤演化规律具有极大的现实意义。鉴于此,本文采用类岩石材料模拟不同长度裂隙对岩石力学性质及冻融损伤劣化的影响,通过试验结果分析冻融过程中岩石的变形破坏现象、抗压强度、弹性模量、应力-应变曲线等在冻融循环作用与不同长度垂直裂隙相耦合作用下的变化规律,研究结果表明:岩石的抗压强度、弹性模量随着裂缝长度增大而不断降低趋势;试样在单轴压缩整个变形过程可以分为4个阶段:(1)孔隙裂隙压密阶段;(2)预制裂隙张开阶段;(3)主干裂隙扩展延伸阶段;(4)断裂破坏阶段。冻融作用对(1)、(3)阶段影响最为明显,冻融后(1)阶段明显增长,而(3)阶段中岩石伴随着主干裂隙扩展的次级裂隙明显减少;冻融后试样相对于冻融前破坏后更加松散破碎,伴随着大量岩粉、矿物颗粒的产生。而对于不同长度裂隙试样,随着裂隙长度增长,试样破碎程度提高,且破坏模式更为复杂。本研究成果可为冻融循环作用下裂隙岩体劣化损伤及断裂特性研究提供参考。  相似文献   

19.
冲击载荷作用下准脆性材料Ⅱ型裂纹扩展研究   总被引:1,自引:0,他引:1  
袁琳  徐涛  赵高峰  杨岳峰  陈庚 《岩土力学》2011,32(10):3155-3162
冲击载荷作用下准脆性材料的动态断裂一直是关注的热点问题,Ⅱ型裂纹试样受冲击剪切时其裂纹扩展方向同材料力学性质和冲击速度等密切相关。应用岩石动态破裂过程动态分析系统软件,对单边平行双裂缝试样开展了冲击载荷作用下的裂纹动态扩展数值模拟,分别研究了不同材料力学性质、材料均质度、入射应力脉冲幅值和历时对II型裂纹动态扩展的影响。数值模拟结果表明,纯II型裂纹在动荷载作用下的扩展,不仅受到剪切损伤,而且还存在拉伸损伤;准脆性材料的非均匀性导致了主裂缝周围产生大量微裂纹的破坏,影响裂缝的分岔和内部的应力值;应力幅值和应力脉冲历时分别超过某一定值时,主裂缝将出现分叉现象,试样的破坏程度加剧,其研究结果对于深入揭示准脆性材料在动荷载作用下II型裂纹扩展的规律及准脆性材料的损伤断裂机制具有重要的参考价值。  相似文献   

20.
动载荷作用下岩石破坏过程的数值试验研究   总被引:3,自引:0,他引:3  
采用基于细观损伤力学基础上开发的动态版RFPA2D数值模拟软件,对动载荷作用下应力波延续时间、应力波峰值和围压对岩石试样破坏的影响进行了数值研究,结果表明,应力波延续时间较短,则尾随应力波波前的高应力区范围较窄,应力波衰减较快;相反,应力波延续时间较长,则紧跟应力波波前的高应力区范围较大,岩石处于破坏状态的时间延长,岩石的破碎程度加大。此外,存在一个合适的应力波延续时间,过分地加大应力波延续时间,反而不利于岩石裂隙的发育。动载荷的峰值越大,试样的破坏程度越大,当峰值达到一定值时,试样顶部呈现粉碎状,试样从上到下破坏程度逐渐减弱。在冲击载荷作用下的岩石随着围压的增加更难破碎,但当围压增大到一定程度时,岩石会突然失稳破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号