共查询到20条相似文献,搜索用时 15 毫秒
1.
On the origin of early Archaean gneisses: A reply 总被引:1,自引:0,他引:1
The use of metamorphosed basic dykes as one of the most important single field criteria for subdividing gneisses in high grade areas into different chronological units is defended. The universal applicability of the lower greenstone-granite-upper greenstone model to all Archaean terrains is questioned using documented sequences of events in the North Atlantic craton. We prefer a chronology based on field criteria to one based on the application of theoretical crustal development models taken from one tectonic environment and used to explain the sequence of events in another.It is shown that the average K2O and Rb content from the 3600 m.y. sialic rocks of the North Atlantic craton ranges between 2.26 (Amîtsoq grey gneisses, Greenland) to 2.66 (Uivak grey gneisses, Labrador). Average K/Rb ratios are respectively 200 and 177, Rb/Sr, 0.33 and 0.29 for the two areas. K and Rb values are thus markedly higher than those reported from most other Archaean gneiss suites. Secondary redistribution of K and Rb at about 3600 m.y. is demonstrated by the documentation of the massive addition of these elements to basic rocks included in the gneisses. Whole sale addition of alkalies during migmatisation to the level of crust now exposed is postulated as one explanation of the unusually high K and Rb contents. It is argued on statistical grounds that if Rb metasomatism occurred it is not possible to use low initial Sr ratios alone to preclude the possibility that part of the Archaean gneiss complexes consist of tonalitic gneiss which are much older than conventional Sr0 interpretations allow. 相似文献
2.
Allen P. Nutman David Bridgwater Brian J. Fryer 《Contributions to Mineralogy and Petrology》1984,87(1):24-34
A distinctive group of augen gneisses and ferrodiorites (termed the iron-rich suite) is a component of the early Archaean Amîtsoq gneisses of southern West Greenland. The iron-rich suite outcrops south of the mouth of Ameralik fjord in an area that underwent granulite facies metamorphism in the early Archaean. The iron-rich suite forms approximately 30% of the Amîtsoq gneiss of this area and occurs as sheets and lenses up to 500 m thick. The rest of the Amîtsoq gneisses are predominantly tonalitic-granodioritic, banded grey gneisses. Despite intense deformation and polymetamorphism, there is local field evidence that the iron-rich suite was intruded into the grey gneisses after they had been affected by tectonism and metamorphism. The banded grey gneisses are interpreted as 3,700 to 3,800 Ma old; U-Pb zircon ages from the iron-rich suite give concordia intercepts at circa 3,600 Ma.Coarse grained augen gneisses with microcline mega-crysts are the dominant lithology of the iron-rich suite. They are mostly granodioritic, grading locally into granite and diorite, and are generally rather massive, but locally have well-preserved layering or are markedly heterogeneous. Mafic components are commonly concentrated into clots rich in hornblende and biotite and containing apatite, ilmenite, sphene and zircon. Variation in the proportion of these clots is the main reason for the compositional variation of the augen gneisses. The ferrodiorites of the suite occur as lenses in the augen gneisses. Leucocratic granitoid sheets locally cut the iron-rich suite. The augen gneisses and ferrodiorites have geochemical characteristics in common, such as high Fe/Mg values and high contents of FeOt, TiO2, P2O5, Zr, Y and total REE (rare earth elements).The iron-rich suite probably formed as follows:Heating of the lower crust adjacent to mantle-derived basic intrusions caused melting of the lower crust, giving rise to granodioritic magmas. Disruption of partially crystallised basic intrusions caused mixing of the crustal melts and the fractionated mantle melts to produce the augen gneisses with their high FeOt, TiO2, P2O5, Zr, Y and total REE enrichment. Fragmented, crystallised parts of the basic intrusions gave rise to the ferrodiorite inclusions. These heterogeneous plutons rose to higher crustal levels where they crystallised as sheets and possibly were responsible for the local granulite facies metamorphism. The granitoid sheets that cut the iron-rich suite are interpreted as crustal melts of local origin.The iron-rich suite resembles Proterozoic rapakivi granite-ferrodiorite-norite (anorthosite) associations which form characteristic suites in late- to post-tectonic environments in recently thickened sial. The occurrence of this type of magmatism in the early Archaean is evidence of the complex, polygenetic nature of the oldest known continental crust. 相似文献
3.
Paul N. Taylor Stephen Moorbath Roy Goodwin Anne C. Petrykowski 《Geochimica et cosmochimica acta》1980,44(10):1437-1453
Ph isotopic analyses are reported for 119 samples of late Archaean (ca. 3000-2800 Myr) calc alkaline orthogneisses and associated anorthosites from southern West Greenland. Over most of the area. whole rock isotope systematics indicate derivation of the magmatic precursors of the gneisses and anorthosites from a source region with a typically mantle-type ratio (μ1 value of 7.5) at. or shortly before, ca. 3000-2800 Myr ago. In contrast, in the Godthaabsfjord region, late Archaean Nûk gneisses and associated anorthosites were emplaced into or through early Archaean (ca. 3700 Myr) Amîtsoq gneisses, and crystallised with variable proportions of two isotopically distinct types of Pb which commenced their respective crustal developments at ca. 3000-2800 Myr and at ca. 3700 Myr ago. Isotopic and other geochemical constraints demonstrate that Nûk gneisses and their temporal equivalents were not produced by reworking or melting of Amîtsoq gneisses. Mixing of early and late Archaean Pb results from contamination of the magmatic precursors of Nûk gneisses and anorthosites (characterised by mantle-type Pb at time of emplacement) with ancient, unradiogenic Pb derived from ca. 3700 Myr-old Amîtsoq-type continental crust invaded by the Nûk magmas. The contaminant is considered to be a trace-element enriched fluid phase released from dehydrating older continental crust during progressive burial and heating by emplacement of calc alkaline magmas in the late Archaean ‘accretion differentiation superevent’. This was followed by mixing of the released fluids with younger Nûk magmas.Pb isotopic compositions of late Archaean gneisses and anorthosites outside the Godthaabsfjord region provide no evidence for the presence of early Archaean Amîtsoq-type continental crust in southern West Greenland in areas more than a few tens of km outside the known outcrop of Amîtsoq gneisses. We suggest that early Archaean crust does not exist at depth in late Archaean areas with undisturbed Pb-isotope systematics, either in Greenland or elsewhere in the North Atlantic craton.Pb-isotope evidence for crust magma interaction, involving selective extraction of certain trace elements by a fluid phase from wall rock and subsequent mixing between magma and contaminant fluid, provides a powerful tool for detection, sub-surface ‘mapping’, and geochronological and geochemical characterisation of deep, ancient continental crust. 相似文献
4.
5.
Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland: A case for long crustal residence time 总被引:2,自引:0,他引:2
Bor-ming Jahn Philippe Vidal Alfred Kröner 《Contributions to Mineralogy and Petrology》1984,86(4):398-408
The Tojottamanselkä gneisses of the Koitelainen region, northern Finland, have been dated by the Sm-Nd and the common Pb methods. The Sm-Nd data of seven samples from a small area (100 m × 100 m) define an isochron ofT=3.06±0.12 (2) Ga, with correspondingI
Nd=0.50848±9 (2), or
Nd(T)=–3.7±1.8. This age is in good agreement with the zircon U-Pb discordia age (3.1 Ga) reported by Kröner et al. (1981) and is interpreted as the time of magmatic emplacement. The distinctly negative
Nd(T) value is found for the first time for Archean tonalitic gneisses and implies derivation of these magmas by remelting of continental material with a long (200–500 Ma) crustal residence time. A few samples, on the other hand, possess
Nd(T) values close to zero, hence they are thought to be derived by partial melting of basaltic sources with nearchondritic REE distribution patterns.Common Pb isotopic data yield an isochron age of 2.64±0.24 (2) Ga which is in agreement, within error limit, with the published Rb-Sr isochron age of 2.73±0.24 Ga (Kröner et al. 1981). The age of ca. 2.7 Ga is interpreted as the time of regional metamorphism during which both Pb and Sr isotopes were rehomogenised.The tonalitic gneisses have highly fractionated REE patterns with (La/Yb)N ratios varying from 9 to 43. Like most Archean gneisses of TTG composition (tonalite-trondhjemite-granodiorite), they could be derived by partial melting of crustal sources of basaltic to granodioritic compositions. Direct derivation by melting of mantle peridotites is excluded.The present geochemical study indicates that the Tojottamanselkä gneisses have had a very complex history that involved multi-stage development. Together with the published age data for the basement gneisses and greenstone belts of eastern central Finland (Vidal et al. 1980; Martin et al. 1983a), we conclude that the Archean crustal development in Finland started at least 3.5 Ga ago and passed through a series of magmatic and metamorphic events at 3.1, 2.85, 2.65 and 2.5 Ga before the final intrusions of K-rich granites about 2.4 Ga ago. 相似文献
6.
The Vestfold Block, like other Archaean cratons in East Antarctica and elsewhere, consists predominantly of felsic orthogneiss (Mossel and Crooked Lake gneisses), with subordinate mafic granulite (Tryne metavolcanics) and paragneiss (Chelnok supracrustals). Two major periods of continental crust formation are represented. The Mossel gneiss (metamorphosed about 3,000 Ma ago) is mainly of tonalitic composition, and is similar to much of the roughly coeval Napier Complex in Enderby Land. The Crooked Lake gneiss was emplaced under high-grade conditions about 2,450 Ma ago and comprises a high proportion of more potassic rocks (monzodioritic and monzonitic suites), as well as tonalite and minor gabbro and diorite. Both Mossel and Crooked Lake gneisses are depleted in Y and have moderate to high Sr, Ce/Y, and Ti/Y, consistent with melting of a mafic source (?subducted hydrated oceanic crust) leaving major residual hornblende (± garnet). Most Crooked Lake gneisses are more enriched in incompatible elements (P, Sr, La, Ce, and particularly Rb, Ba, and K) than Mossel gneisses, suggesting derivation from a more enriched mafic source. The Vestfold Block contains few orthogneisses derived by melting of older felsic crustal rocks, in marked contrast to the Archaean Napier Complex and, in particular, southern Prince Charles Mountains. Both Mossel and Crooked Lake tonalites are strongly depleted in Rb, K, Th, and U, and have very low Rb/Sr and high K/Rb; more potassic orthogneisses are depleted in Th, U, and, to lesser extents, Rb. Tryne metavolcanics are depleted in Th and Rb, but appear to have been enriched in K (and probably Na), possibly during early low-grade alteration. 相似文献
7.
Jane D. Sills 《Lithos》1983,16(2):113-124
Gneisses, metamorphosed at granulite facies ca 2.7 Ga, were subsequently retrogressed to amphibolite facies during a prolonged period of retrogression, perhaps lasting as long as 200 m.y. The Scourie dykes were emplaced towards the end of this event. Localised Laxfordian shear zones further modified the mineral assemblages. The retrogression caused the production of a uniform assemblage. A study of hornblende composition shows that it depends on metamorphic grade, host rock composition and paragenesis. The sequence of mineral assemblages suggests that retrogression took place on a falling temperature path, beginning at about . Post-tectonic muscovite indicates that temperatures were still in excess of 500°C after the formation of Laxfordian shear zones. This indicates that the Lewisian complex was uplifted and cooled extremely slowly. 相似文献
8.
Twenty granodioritic rocks and one amphibolitic enclave of the “basement” of the Suomussalmi-Kuhmo Archaean (2.65 Ga) greenstone belts (central-eastern Finland), have been chosen together with one greenstone sample for Rb-Sr and Sm-Nd geochronological and isotopic studies.The granitoïd rocks are subdivided into three groups: two generations of grey gneisses and a post-belt augen gneiss. The Rb-Sr ages of the first and second generation of grey gneisses are 2.86 ± 0.09 and 2.62 ± 0.07 Ga, respectively. These results are corroborated by Sm-Nd data. The post-belt augen gneiss gives an age of 2.51 ± 0.11 Ga. The results show that the two generations of grey gneisses, the greenstone belts and the post-greenstone augen gneiss, were developed over a period > 350 Ma. The two generations of grey gneisses show identical ISr values (0.7023 ± 8 and 0.7024 ± 6) which contrast with that of the augen gneiss (0.7049 ± 8). The low ISr and the near-chondritic ?TCHUR values indicate that the grey gneisses cannot derived from much older continental materials. Trace element studies suggest that these grey gneisses have had a multi-stage development. The augen gneiss with a moderately high ISr is likely to be derived from a granodiorite originated by partial melting of older sialic crust. The more probable parent rock seems to be the first generation grey gneisses. The ISr and average Rb/Sr values preclude the greenstone belt and the second generation of grey gneisses as the protolith. 相似文献
9.
Hugh Rollinson 《Contributions to Mineralogy and Petrology》2007,154(3):241-252
This paper examines 3.8 Ga peridotites from Greenland and Labrador to test claims that these samples are unmodified early
Archaean mantle. Geochemical criteria were applied in which samples were compared to the mantle array in Mg/Si versus Al/Si
(wt%) space, their REE patterns were compared to those of different mantle types and their chromite compositions were compared
to mantle chromite compositions as expressed by their cr# and fe#. Geochemical data were used from the previously published
works of Friend et al. (2002) and Bennett et al. (2002). Only two samples, from the region south of Isua satisfied all criteria, indicating that the area south of the Isua Greenstone
Belt in west Greenland is a suitable place to search for early Archaean mantle. This study also confirms the observation by
Friend et al. (2002) that early Archaean mantle from south of Isua is of a different character from Archaean mantle from the subcontinental lithosphere.
Calculations presented here show that some mantle fragments from south of Isua experienced a lower degree of melt extraction
and were probably more oxidising than early Archaean mantle preserved in the subcontinental lithosphere. Elemental concentrations
of Os in early Archaean mantle are lower than the new estimate for the primitive upper mantle of Becker et al. (2006). Peridotites from the Isua greenstone belt are not mantle, but have an affinity with the layered intrusions found south
of Isua. 相似文献
10.
晚太古代Sanukite(赞岐岩)与地球早期演化 总被引:9,自引:12,他引:9
Shirey and Hanson(1984)将某些太古代的高镁闪长岩套称为sanukite(赞岐岩),类似于日本中新世(11~15Ma)Setouchi火山岩带的高镁安山岩。Sanukitoids由闪长岩-二长闪长岩-花岗闪长岩组成,不同于TTC岩套(奥长花岗岩-英云闪长岩-花岗闪长岩)。Sanukitoids具有下列地球化学特征:富Mg,Mg~#>0.60,Ni和Cr>100μg/g,Sr和Ba>500μg/g,LREE富集(大于球粒陨石100倍),无Eu异常。高镁安山岩在太古代很少见,而其相应的侵入岩高镁闪长岩或sanukitoids,虽然数量也很少,但却是各地晚太古代地体中随处可见的。Sanukitoids的原始岩浆是交代的地幔楔部分熔融形成的,随后可能经历了广泛的分离结晶作用。TTC和sanukitoids岩套可以相伴产出,二者均与板片熔融有关,TTG与其直接有关,sanukitoids可能与其间接有关。全球Sanukitoids主要集中在晚太古代时期,可能暗示板块的消减作用在~3.0Ga以后才起了重要的作用。 相似文献
11.
The main rock types in the area north of the Frederikshåbs isblink are streaky gneisses, massive tonalites and ‘supracrustals’. The gneisses are thought to be the parent rocks of the tonalite and can be seen to merge into tonalite across a narrow zone of nebulite. Rb-Sr whole rock points from samples of gneiss and tonalite fall on a common isochron with an age of 2662 ± 116 m.y. (2σ) and initial ratio of 0.7032 ± 0.0008 (2σ) (half-life of 87Rb = 50 b.y.). The uncertainties in the isochron could mask small age and initial ratio differences between the gneiss and tonalite. However, our present interpretation is that the isochron reflects a homogenization of Sr isotopes within and between the two rock types. The presence of two out of four K-feldspar points on the whole rock isochron is interpreted as evidence that the K-feldspar became closed to Sr isotope migration at the same time as the whole rocks. Subsequent local isotopic disturbance has resulted in a minor loss of radiogenic strontium from two of the samples. The interpretation of the K-feldspar as a product of the epidoteamphibolite facies metamorphism allows the conclusion that the whole rock-K-feldspar isochron is recording a Sr isotopic homogenization during this event and is not related to the formation of the gneiss or the tonalite. Rb-Sr closure ages of ca. 2515 m.y. for muscovite and ca. 1950 m.y. for biotite could be recording separate isotopic disturbances or the cessation of strontium isotope migration as the minerals cooled through their characteristic blocking temperatures. Zircons from both the gneiss and the tonalite have igneous morphological features. Their U-Pb systems are complex, however, and suggest a multistage history of isotopic disturbance. Whereas the zircon U-Pb and whole rock Rb-Sr results suggest a maximum age of approximately 3000 m.y. for the parent rocks of the gneiss and tonalite they do not entirely exclude the possibility that the rocks represent older crust in which the isotopic systems have been almost completely reset ca. 2700 m.y. ago. 相似文献
12.
Albite gneisses containing up to 8.7 percent Na2O and as little as 0.1% K2O comprise a significant part of the Proterozoic Lyon Mountain Gneiss in the Ausable Forks Quadrangle of the northeastern Adirondacks, New York State. Two distinct types of albite gneisses are present. One is a trondhjemitic leucogneiss (LAG) consisting principally of albite (Ab95–Ab98) and quartz with minor magnetite and, locally, minor amounts of amphibole or acmiterich pyroxene. LAG probably originated by metamorphism of a rhyolitie or rhyodacitic ash-flow tuff with A-type geochemical affinities, following post-depositional analcitization in a saline or saline-alkaline environment. The other type is a mafic albite gneiss (MAG) containing albite and pyroxene along with 0–45 percent quartz, minor amphibole, and titanite. MAG locally displays pinstripe banding and contains albite (Ab98) megacrysts up to 5 cm across. Its precursor may have been a sediment composed of diagenetic analcite or albite, dolomite, and quartz. Both types of albite gneiss are interlayered with granitic gneisses (LMG) of variable composition derived from less altered tuffs. A potassium-rich (up to 9.7% K2O) microcline gneiss facies may have had a protolith rich in diagenetic K feldspar. We propose that the albite gneisses and associated granitic gneisses are the granulite-facies metamorphic equivalent of a bimodal, dominantly felsic, volcanic suite with minor intercalated sediments, probably including evaporites. The volcanics were erupted in an anorogenic setting, such as an incipient or failed intracontinental rift. Deposition took place in a closed-basin, playa lake environment, where diagenetic alteration resulted in redistribution of the alkalis and strong oxidation. 相似文献
13.
Comparison of initial Pb-isotope signatures of several early Archaean (3.65-3.82 Ga) lithologies (orthogneisses and metasediments) and minerals (feldspar and galena) documents the existence of substantial isotopic heterogeneity in the early Archaean, particularly in the 207Pb/204Pb ratio. The magnitude of isotopic variability at 3.82-3.65 Ga requires source separation between 4.3 and 4.1 Ga, depending on the extent of U/Pb fractionation possible in the early Earth. The isotopic heterogeneity could reflect the coexistence of enriched and depleted mantle domains or the separation of a terrestrial protocrust with a 238U/204Pb (µ) that was ca. 20-30% higher than coeval mantle. We prefer this latter explanation because the high-µ signature is most evident in metasediments (that formed at the Earth's surface). This interpretation is strengthened by the fact that no straightforward mantle model can be constructed for these high-µ lithologies without violating bulk silicate Earth constraints. The Pb-isotope evidence for a long-lived protocrust complements similar Hf-isotope data from the Earth's oldest zircons, which also require an origin from an enriched (low Lu/Hf) environment. A model is developed in which ́.8-Ga tonalite and monzodiorite gneiss precursors (for one of which we provide zircon U-Pb data) are not mantle-derived but formed by remelting or differentiation of ancient (ca. 4.3 Ga) basaltic crust which had evolved with a higher U/Pb ratio than coeval mantle in the absence of the subduction process. With the initiation of terrestrial subduction at, we propose, ca. 3.75 Ga, most of the ́.8-Ga basaltic shell (and its differentiation products) was recycled into the mantle, because of the lack of a stabilising mantle lithosphere. We argue that the key event for preservation of all ́.8-Ga terrestrial crust was the intrusion of voluminous granitoids immediately after establishment of global subduction because of complementary creation of a lithospheric keel. Furthermore, we argue that preservation of ́.8-Ga material (in situ rocks and zircons) globally is restricted to cratons with a high U/Pb source character (North Atlantic, Slave, Zimbabwe, Yilgarn, and Wyoming), and that the Pb-isotope systematics of these provinces are ultimately explained by reworking of material that was derived from ca. 4.3 Ga (i.e. Hadean) basaltic crust. 相似文献
14.
Initial Pb isotopic compositions have been determined for potassium feldspar from ca. 2.58 to 2.62 Ga plutonic rocks in the southern and central Slave Province of northwestern Canada to evaluate the extent of recycling of ancient crust within the province. Large differences in initial Pb compositions were measured which correlate with geographical areas of the province. Plutons in the east-central part of the province have initial compositions only slightly more radiogenic than estimated mantle values (207Pb/204Pb 14.8–14.9), and were dominantly deruved from juvenile crustal sources. In contrast, plutons in the Point Lake and western Contwoyto Lake areas of the western Slave Province have radiogenic compositions (207Pb/204Pb 15.1–15.2), and indicate significant recycling of pre-3.5 Ga crust. The Pb data support previous interpretations, based on Nd isotopes, for a major isotopic boundary in the central part of the province. Granites from the southern part of the province, near Yellowknife, have intermediate compositions which indicate: (1) the age of the protolith to the granitoids in the Yellowknife area is younger than at Point Lake, but older than in the eastern Slave; or (2) the granitoids in the Yellowknife area contain a mixture of an older Point Lake-type component and younger crust. The absence of pre-3.2 Ga crust in the Yellowknife area and lack of evidence for pre-2.8 Ga inherited zircons in the Yellowknife granitoids favour the former possibility. Evidence for recycling of ancient crustal sources, such as the Acasta Gneiss, is limited to a relatively small area of the west-central part of the province, suggesting that Acasta aged, or derived, crust is not widespread in the province. The marked regionality of isotopic composition may reflect a basement in the western part of the province which is itself a collage of crust of different age, being younger (ca 3.2-2.9) in the south, relative to the Point Lake region (3.9-3.2 Ga). 相似文献
15.
The rare earth element (REE) patterns in the 3.8 Ga-old Isua iron-formation are generally flat, resembling those of some primitive basalts. Samples with positive, negative or no europium anomaly were found. It is shown that diagenesis and metamorphism did not significantly change the REE patterns. The presence or absence of europium anomalies in iron-formations cannot be used as an indicator of the presence or absence of oxygen in the atmosphere during the Archaean and Precambrian. The REE contents cannot be used to distinguish Algoma-type from Superior-type iron-formations. There appears to be a striking similarity between the Archaean submarine exhalations and modern submarine hydrothermal systems. It is considered likely that Archaean and early Precambrian seawater had a chondritic REE pattern with a slight enrichment of light REE. 相似文献
16.
Kent Brooks 《Geology Today》2011,27(1):15-19
Broadly the science of geology has passed through a number of distinct phases. In the early days attention was focussed on establishing a stratigraphic framework, concentrating on fossils and lithologies—the days of mapping and systematizing of sedimentary successions and the uncovering of the succession of life. Later, in the early twentieth century, geologists became much more interested in igneous rocks. By the 1960s attention turned to the ocean basins, culminating in the acceptance of the paradigm of plate tectonics. At the end of the 1960s, one area of geology that remained relatively little understood was the huge span of time represented by the Precambrian, about 80 per cent of Earth's history. By the 1960s this was changing. Radiometric dating was beginning to show the relative ages of such terranes and new methods of mapping were beginning to be used. 相似文献
17.
Relict discordant relationships between the c.3000–2800 Ma old Nǔk granitic (s.l.) gneisses and the c.3700 Ma old Amǐtsoq gneisses of Ivisǎrtoq clearly indicate that the Nǔk gneisses originated as intrusive sheets and bosses. The older gneisses are preserved as continuous banded units which are injected by thin granitic dykes and sills and become progressively disrupted by increasing proportions of intrusive Nǔk granitic material until they occur merely as discrete xenoliths and enclaves dissemminated within a younger gneiss matrix. The Nǔk granites were emplaced into the cores of developing large scale folds within intercalated oceanic and ancient continental portions of the Archaean crust, previously interleaved by thrusting. 相似文献
18.
P. Compton 《Contributions to Mineralogy and Petrology》1978,66(3):283-293
Rare earth element (REE) concentrations have been determined (by the INAA method) for the c. 2,800 m.y. old Nûk gneisses from the Buksefjorden region, southern West Greenland. Samples include dioritic to granodioritic gneisses and synplutonic mafic dykes; a Malene metagabbro and Qôrqut granite were analysed for comparisons.The early Nûk gneisses, diorites and tonalites, have mildly fractionated REE patterns which are interpreted as resulting from partial melting of garnetbearing amphibolite or granulite. Early Nûk trondhjemitic gneisses possess downward convex patterns with prominent positive Eu anomalies; they may be related to the diorites and tonalites by the separation of hornblende in a residue of partial melting or fractional crystallization. Most of the later Nûk grey gneisses have extremely fractionated linear patterns which were derived from a source very rich in garnet, possibly eclogite. REE patterns measured in the late Nûk Ilivertalik granite complex are mildly fractionated but with a high overall abundance consistent with an origin by partial melting of mafic lower crustal material. Two sets of synplutonic mafic dykes have strongly fractionated patterns similar to those found in alkali basalts.The geochemical variations suggest that the igneous precursors of the Nûk gneisses were not cogenetic, but were derived from widely differing sources. 相似文献
19.
Peter Misch 《Contributions to Mineralogy and Petrology》1967,17(1):1-70
Regionally developed migmatitic gneisses make up most of the Skagit Gneiss, though there are some orthogneisses also, derived from pre- to late-metamorphic intrusives. The migmatites contain countless, though quantitatively subordinate, remnants of biotite schists, less abundant amphibolitic rocks, and minor varieties of metasediments. Biotite schists (fine-grained paragneisses) predominantly are plagioclase-rich, having the compositions of highly immature graywackes; quartz-rich varieties are minor, and alumina-excess rocks very rare. There are para- and ortho-amphibolites, the latter of basaltic-gabbroic parentage. Leucocratic hornblende schists are largely meta-sedimentary. Apart from subordinate varieties in which K-feldspar is a major constituent, the leucocratic migmatitic gneisses have (leuco-) trondhjemitic and, to a lesser extent, quartz-dioritic compositions.The Skagit Gneiss comprises an epidote-bearing subfacies in which sodic andesine is the most calcic plagioclase, and a predominant epidote-free subfacies where plagioclase ranges from oligoclase to bytownite-anorthite. All of the former and at least most of the latter subfacies belongs in the staurolite-kyanite zone. Various mineralogical features suggest a low-P variant within the field of Barrovian-type metamorphism. Even the epidote-free subfacies did not reach the highest grades of regional metamorphism; temperatures are estimated to have been on the order of 600° C there. For the epidote-bearing subfacies, attainment of anatectic temperatures is still more improbable.A systematic study of composition and zoning of plagioclase reveals, statistically as well as for lit-par-lit samples, close relationships between the plagioclase of leucocratic migmatitic gneisses and that of associated schists, amphibolites, etc., indicating that the former was directly derived from the latter by metamorphic recrystallization, with a small shift towards more sodic plagioclase compositions in most, but not all, of the gneisses. Plagioclase relationships and other data seem to rule out igneous injection as the chief agent of migmatization. An anatectic origin of the leucocratic migmatitic gneisses is unlikely for the following reasons. (1) The plagioclase of the gneisses ranges widely in composition (up to, and locally even beyond, calcic andesine), depending on the parent-rock plagioclase. (2) Major K-feldspar is lacking in most of the gneisses which, actually, are impoverished in K2O compared to parent schists. (3) Most of the gneisses have bulk compositions far from those of lowest melting in the granite system. (4) There is no wholesale basification of schist and amphibolite remnants. (5) Ratios of leucocratic gneiss to remnant material commonly are far too high for all of the former to have been split off the latter. (6) The sequence of migmatization, such as amphibolite(quartz)-dioritic gneiss trondhjemitic gneissleuco-trondhjemitic pegmatitic gneiss, is opposite to that to be expected in progressive anatexis. (7) A similar solid-state history of deformation and recrystallization is recorded in gneisses and remnants. (8) The metamorphic grade does not support anatexis. Points (4) + (5) also argue against metamorphic differentiation having been the sole agent of migmatization.Small-scale metamorphic-differentiation features occur, but gradations from schist, etc., into leucocratic gneiss are widespread, not only across but also along the strike. Replacement commonly is associated with prominent development of porphyroblastic plagioclase. On a much larger scale, bulk-compositional changes are indicated where thick schist- or amphibolitederived leucocratic gneiss sequences contain only subordinate remnants of their parent rocks. Such changes imply introduction of material — if not by injection, then by metasomatism. An alternative model, namely, simple isoohemical recrystallization mimetic after patterns of primary sedimentary differentiation would require that (leuco)-trondhjemitic arkoses were intimately associated with and graded into highly immature graywackes and even basalts and gabbros. Nor can this model be reconciled with plagioclase relationships and other petrographic data, or with certain aspects of the actual geometry of the migmatites. Both metamorphic differentiation and metasomatism are believed to have contributed to migmatization. Plagioclase data point both ways. Overall compositional changes in large rock volumes suggest that metasomatism was a first-order agent of regional migmatization while metamorphic differentiation mostly played a more subsidiary role.In the sequences from predominant types of schist and amphibolite to leucocratic gneisses, alumina contents are nearly constant. Assuming that alumina approaches something like an internal standard, the chemical balance of migmatization can be estimated. Small but systematic increase in Na2O (by 1 to over 2 wt. %) is linked with marked increase in SiO2 (on the order of 5 to 10% for schist-, and more for amphibolite-derived gneisses) and with removal of iron and magnesia. CaO does not change systematically, except for decline during the first stages of migmatization of amphibolite. Removal of iron and magnesia is coupled with loss of about 0.5 to about 1.5% K2O in biotite-schist-derived gneisses (except in subordinate varieties with major K-feldspar). In the series amphibolite-gneiss, gain in K2O due to progressive biotitization of hornblende is followed by loss of K2O in leucocratic members. Some of the potash set free from migmatized schists is accounted for by late-metamorphic K activity (biotitization of hornblende in amphibolites and their derivatives, also biotitization of garnet, late growth of minor K-feldspar in many but not all gneisses).Small-scale but widespread late-stage features, such as local intrusive motion of crystalline migmatite, crosscutting pegmatites, etc., are not discussed, as the topic of the paper is the main-stage regional migmatization.Subordinate late-metamorphically intruded orthogneisses, most with major K-feldspar, postdate the autochthonous migmatites and are genetically unrelated to them. They rose from depths where T was high enough for melting to occur. They invaded a non-migmatized belt west of the Skagit Gneiss also. 相似文献
20.
Dr. T. Kano 《Mineralogy and Petrology》1991,45(1):29-45
Summary The augen gneisses exposed in the Katakai area, in the north-eastern part of the Hida metamorphic complex, central Japan, are highly metasomatized sheared rocks. They contain K-feldspar megacrysts of nearly maximum ordering, and occur in a narrow zone, 2–3 km wide and 20–25 km long, along the boundary between hornblende gneiss and early Mesozoic granites. The hornblende gneiss, the protolith of augen gneisses, is mylonitized toward the granite, accompanied by significant metasomatism under greenschist facies conditions. The enrichment of SiO2 and K2O, and the increase of modal quartz, K-feldspar and hydrous minerals, are well described in terms of the Ml-value [Mylonitization Index: the modal fraction of fine-grained matrix (< 0.2 mm) representing the amount of grain-size reduction in thin section]. The primary plagioclase was albitized and the essential mineral assemblages were changed from oligoclase + hornblende in the protolith to actinolite + chlorite + epidote, and then, into epidote + biotite, along with the increase in MI-value. The mineralogical changes and growth of low microcline were carried out by reaction with and precipitation from fluids which flowed from the granite into the country rocks under shearing.
Metasomatische Entstehung von Augengneisen und Myloniten im Metamorphen Komplex von Hida, Zentral-Japan
Zusammenfassung Die im Katakai-Gebiet im Nordostteil des metamorphen Komplexes von Hida, ZentralJapan, auftretenden Augengneise sind intensiv metasomatisierte, zerscherte Gesteine. Sie enthalten Megacryste von nahezu maximalem Ordnungszustand, und kommen in einer engen, 2–3 km breiten und 20–25 km langen Zone längs der Grenze zwischen Hornblendegneisen und frühmesozoischen Graniten vor. Der Homblendegneis, als Ausgangsgestein der Augengneise, ist gegen den Granit zunehmend mylonitisiert. Dies wird von signifikanter Metasomatose unter Grünschieferbedingungen begleitet. Die Anreicherng von SiO2 und K2O und die Zunahme von modalem Quarz, K-Feldspat und OH-führenden Mineralen sind im Rahmen des MI-Wertes (Mylonitisations-Index) beschrieben. Dieser Index gibt den modalen Anteil feinkörniger Matrix (< 0.2 mm) an und stellt den Betrag der Korngrößen-Reduktion in den Schliffen dar. Der primäre Plagioklas ist albitisiert, und die wichtigsten Mineralassoziationen wurden von Oligoklas + Hornblende im Ursprungsgestein in Aktinolit + Chlorit + Epidot, und dann in Epidot + Biotit umgewandelt; dies ging mit einer Zunahme des MI-Wertes einher. Die mineralogischen Umwandlungen, und das Wachstum von Tief-Mikroklin fanden durch Reaktion mit, und Ausfällung von Fluiden statt, die während der ScherVorgänge von Granit in die Nebengesteine migrierten.相似文献